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Design options 

Cache memories remain one of the hot topics in the computer architecture research, 
since the ever-increasing speed gap between processor and memory only emphasizes 
the need for more efficient memory hierarchy. As modern processors include multiple 
levels of caches, and as cache associatively increases, it is important to revisit the 
effectiveness of these factors on access time and dissipated power. [1] 

Figure 1: the relation between the miss rate and the cache size [2] 
Memory hierarchy design is based on three important principles:  

• Make the common case. 

• Principle of locality. 
• Smaller is faster. 

Moving farther away from the CPU, the memory in the level becomes larger and 
slower. The above principles suggest that to keep recently accessed items in the 
fastest memory. Because the smaller memories are more expensive and faster, we 
want to use smaller memories to try to hold the most recently accessed items close to 
the CPU and successively larger (and slower, and less expensive) memories as we 
move away from the CPU. This type of organization is called a memory hierarchy.  
To evaluate the effectiveness of the memory hierarchy we can use the formula:  
      Memory_stall_cycles =  IC * Mem_Refs * Miss_Rate * Miss_Penalty  
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         where       IC                       = Instruction count  
                        Mem_Refs           = Memory References per Instruction  
                        Miss_Rate            =  the fraction of accesses that are not in the cache  
                        Miss_Penalty       =  the additional time to service the miss  
Simulator 

Many simulation tools for computer architecture researches and education purposes 
have been developed previously. Each tool has its own advantages and disadvantages 
in complexity, efficiency, and value as an educational aid.  
 

• Simplescalar 3.0 
The SimpleScalar simulator, is efficient and includes support for cache and 
superscalar simulation, and uses an appropriate instruction set derived from 
the MIPS ISA. The SimpleScalar toolset provides an infrastructure for 
simulation and architectural modeling. The toolset can model a variety of 
platforms ranging from simple unpipelined processors to detailed dynamically 
scheduled microarchitectures with multiple-level memory hierarchies. For 
users with more individual needs, SimpleScalar offers a documented and well-
structured design, which simplifies extending the toolset to accomplish most 
architectural modeling tasks.  
SimpleScalar simulators reproduce computing device operations by executing 
all program instructions using an interpreter. The toolset’s instruction 
interpreters support several popular instruction sets, including Alpha, Power 
PC, x86, and ARM. [3][4] 

• CACTI 4.1 
CACTI is an integrated cache and memory access time, cycle time, area, 
leakage, and dynamic power model. By integrating all these models together, 
users can have confidence that tradeoffs between time, power, and area are all 
based on the same assumptions and, hence, are mutually consistent. CACTI is 
intended for use by computer architects to better understand the performance 
tradeoffs inherent in memory system organizations. The name CACTI was 
derived from the phrase “Cache Access and Cycle Timing Information”. Many 
cache evaluations employ the CACTI cache access modeling tool to estimate 
delay, power, and area for a given cache size. [7] 
Version 4 was developed by David Tarjan, Shyamkumar Thoziyoor and Norm 
Jouppi in 2006 and its primary enhancement was the addition of a leakage 
power model and a web interface. Version 4 also added support for modeling 
sequential and fast cache access modes amongst other enhancements. [6] 
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Workloads 

The subset of SPEC CPU2000 benchmarks  that I used in my study were compiled to 
produce PISA binaries which I downloaded them from [5], and the inputs for these 
binaries downloaded from[8]. 

I used two floating SPEC CPU2000: ammp and equake. Another two as intger SPEC 
CPU2000:bzip2 and parser. The details about these SPEC are listed in table 1. 
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Table 1: benchmarks details 

SPEC CPU2000  Description 

ammp The benchmark runs molecular dynamics (i.e. solves 
the ODE defined by Newton's equations for the 
motions of the atoms in the system) on a protein-
inhibitor complex which is embedded in water.[9] 

parser The Link Grammar Parser is a syntactic parser of 
English, based on link grammar, an original theory of 
English syntax. Given a sentence, the system assigns to 
it a syntactic structure, which consists of set of labeled 
links connecting pairs of words. The parser has a 
dictionary of about 60000 word forms. It has coverage 
of a wide variety of syntactic constructions, including 
many rare and idiomatic ones. The parser is robust; it is 
able to skip over portions of the sentence that it cannot 
understand, and assign some structure to the rest of the 
sentence. It is able to handle unknown vocabulary, and 
make intelligent guesses from context about the 
syntactic categories of unknown words. [10] 

--Bzip2 256.bzip2 is based on Julian Seward's bzip2 version 
0.1. The only difference between bzip2 0.1 and 
256.bzip2 is that SPEC's version of bzip2 performs no 
file I/O other than reading the input. All compression 
and decompression happens entirely in memory. This is 
to help isolate the work done to only the CPU and 
memory subsystem.[11] 

equake The program simulates the propagation of elastic waves 
in large, highly heterogeneous valleys, such as 
California's San Fernando Valley, or the Greater Los 
Angeles Basin. The goal is to recover the time history 
of the ground motion everywhere within the valley due 
to a specific seismic event. Computations are 
performed on an unstructured mesh that locally 
resolves wavelengths, using a finite element method. 
[12] 
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Results 

I divided my expermints into two parts, in the first I examined the effect of changing 
the L1 data cache over the misses rate, access time and power consumption using one 
of my benchmarks which is (ammp). 

In the second part, I examined the effect of changing the associtivity of the L1 data 
cache over the misses rate, access time, and power consumption using all the four 
benchmarks listed in workload section. 

Excaminiation procedure of the first part 

To caclculate the misses rate I used the sim-cache tool which is a part of the 
SimpleScalar, changing the cache parameters and re-run sim-cache on ammp SPEC 
2000 benchmarks, then I ran the CACTI 4.1 to measure the access time and the 
power. 

1. In simplescalar(sim-cache), I  changed cache configuration at command line 

The cache config parameter <config> has the following format: 

<name>:<nsets>:<bsize>:<assoc>:<repl> 

<name> - name of the cache being defined 

<nsets> - number of sets in the cache 

<bsize> - block size of the cache 

<assoc> - associativity of the cache 

<repl> - block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random 

-cache:il1 il1:1024:32:1:l to configure L1 I-cache to 32K size, with 32 byte block size 
and direct-mapped cache. 

-cache:dl1 dl1:512:32:2:l to configure L1 I-cache to 32K size, with 32 byte block size 
and 2-way set-associative cache. 

The following results was obtained: 

benchmarks/ammp cache accesses cache hits cache misses 
I-cache(32K) 800000 779825 20175 
I-cache(16K) 800000 740511 59489 
I-cache(8K) 800000 623981 176019 

benchmarks/ammp cache accesses cache hits cache misses 
D-cache(32K) 262846 261377 1468 
D-cache(16K) 262846 260014 2832 
D-cache(8K) 262846 257630 5216 
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To test the access time, the total dynamic read power and the leakage read/write 
power I used CACTI 4.1. 

The command line cacti configuration is: cacti C B A TECH Nsubbanks, where C for 
cache size, B for cache block size, A for associativity, TECH for the transistor size, 
and Nsubbanks for the number of memory banks. 

For example: type ./cacti 32768 32 1 0.13 1 to simulate 32K cache with 32 byte, 
direct-mapped cache. 
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Excaminiation procedure of the second part 

To caclculate the misses rate I used the sim-cache tool which is a part of the 
SimpleScalar, changing the cache parameters to configure it as direct mapped(one-
way), 2-way, 4-way, and 8-way set associtive. Then re-run sim-cache on my four 
SPEC 2000 benchmarks, then I ran the CACTI 4.1 to measure the access time and the 
power for each configration. 
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Conclusions 

Nowadays, it is really difficult to build a memory system to keep on track with faster 
CPUs.  It is the principle of locality that gives a chance to overcome the long latency 
of memory access. As the gap between processor speed and memory speed is 
expanding, it is very important to consider tradeoffs for power and performance of 
cache memories. The simulation in this report demonstrating cache design tradeoff. 
Data examples calculated using SimpleScalar and CACTI  demonstrate these tradeoff. 
For future work, more accurate performance prediction will be possible by combining 
multi-level cache simulator with power consideration to calculate miss penalty 
effectively. In addition to performance and cost estimation, it is important to estimate 
the complete design including other factors such as power consumption in cache 
memory design. 
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