

Cache design tradeoffs

Simulation Project report

Advanced architecture

University of Jordan

Computer engineering department

Submitted by: Abeer Hyari

Jan-2010

2

Design options

Cache memories remain one of the hot topics in the computer architecture research,
since the ever-increasing speed gap between processor and memory only emphasizes
the need for more efficient memory hierarchy. As modern processors include multiple
levels of caches, and as cache associatively increases, it is important to revisit the
effectiveness of these factors on access time and dissipated power. [1]

Figure 1: the relation between the miss rate and the cache size [2]
Memory hierarchy design is based on three important principles:

• Make the common case.

• Principle of locality.
• Smaller is faster.

Moving farther away from the CPU, the memory in the level becomes larger and
slower. The above principles suggest that to keep recently accessed items in the
fastest memory. Because the smaller memories are more expensive and faster, we
want to use smaller memories to try to hold the most recently accessed items close to
the CPU and successively larger (and slower, and less expensive) memories as we
move away from the CPU. This type of organization is called a memory hierarchy.
To evaluate the effectiveness of the memory hierarchy we can use the formula:
 Memory_stall_cycles = IC * Mem_Refs * Miss_Rate * Miss_Penalty

3

 where IC = Instruction count
 Mem_Refs = Memory References per Instruction
 Miss_Rate = the fraction of accesses that are not in the cache
 Miss_Penalty = the additional time to service the miss
Simulator

Many simulation tools for computer architecture researches and education purposes
have been developed previously. Each tool has its own advantages and disadvantages
in complexity, efficiency, and value as an educational aid.

• Simplescalar 3.0
The SimpleScalar simulator, is efficient and includes support for cache and
superscalar simulation, and uses an appropriate instruction set derived from
the MIPS ISA. The SimpleScalar toolset provides an infrastructure for
simulation and architectural modeling. The toolset can model a variety of
platforms ranging from simple unpipelined processors to detailed dynamically
scheduled microarchitectures with multiple-level memory hierarchies. For
users with more individual needs, SimpleScalar offers a documented and well-
structured design, which simplifies extending the toolset to accomplish most
architectural modeling tasks.
SimpleScalar simulators reproduce computing device operations by executing
all program instructions using an interpreter. The toolset’s instruction
interpreters support several popular instruction sets, including Alpha, Power
PC, x86, and ARM. [3][4]

• CACTI 4.1
CACTI is an integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model. By integrating all these models together,
users can have confidence that tradeoffs between time, power, and area are all
based on the same assumptions and, hence, are mutually consistent. CACTI is
intended for use by computer architects to better understand the performance
tradeoffs inherent in memory system organizations. The name CACTI was
derived from the phrase “Cache Access and Cycle Timing Information”. Many
cache evaluations employ the CACTI cache access modeling tool to estimate
delay, power, and area for a given cache size. [7]
Version 4 was developed by David Tarjan, Shyamkumar Thoziyoor and Norm
Jouppi in 2006 and its primary enhancement was the addition of a leakage
power model and a web interface. Version 4 also added support for modeling
sequential and fast cache access modes amongst other enhancements. [6]

4

Workloads

The subset of SPEC CPU2000 benchmarks that I used in my study were compiled to
produce PISA binaries which I downloaded them from [5], and the inputs for these
binaries downloaded from[8].

I used two floating SPEC CPU2000: ammp and equake. Another two as intger SPEC
CPU2000:bzip2 and parser. The details about these SPEC are listed in table 1.

5

Table 1: benchmarks details

SPEC CPU2000 Description

ammp The benchmark runs molecular dynamics (i.e. solves
the ODE defined by Newton's equations for the
motions of the atoms in the system) on a protein-
inhibitor complex which is embedded in water.[9]

parser The Link Grammar Parser is a syntactic parser of
English, based on link grammar, an original theory of
English syntax. Given a sentence, the system assigns to
it a syntactic structure, which consists of set of labeled
links connecting pairs of words. The parser has a
dictionary of about 60000 word forms. It has coverage
of a wide variety of syntactic constructions, including
many rare and idiomatic ones. The parser is robust; it is
able to skip over portions of the sentence that it cannot
understand, and assign some structure to the rest of the
sentence. It is able to handle unknown vocabulary, and
make intelligent guesses from context about the
syntactic categories of unknown words. [10]

--Bzip2 256.bzip2 is based on Julian Seward's bzip2 version
0.1. The only difference between bzip2 0.1 and
256.bzip2 is that SPEC's version of bzip2 performs no
file I/O other than reading the input. All compression
and decompression happens entirely in memory. This is
to help isolate the work done to only the CPU and
memory subsystem.[11]

equake The program simulates the propagation of elastic waves
in large, highly heterogeneous valleys, such as
California's San Fernando Valley, or the Greater Los
Angeles Basin. The goal is to recover the time history
of the ground motion everywhere within the valley due
to a specific seismic event. Computations are
performed on an unstructured mesh that locally
resolves wavelengths, using a finite element method.
[12]

6

Results

I divided my expermints into two parts, in the first I examined the effect of changing
the L1 data cache over the misses rate, access time and power consumption using one
of my benchmarks which is (ammp).

In the second part, I examined the effect of changing the associtivity of the L1 data
cache over the misses rate, access time, and power consumption using all the four
benchmarks listed in workload section.

Excaminiation procedure of the first part

To caclculate the misses rate I used the sim-cache tool which is a part of the
SimpleScalar, changing the cache parameters and re-run sim-cache on ammp SPEC
2000 benchmarks, then I ran the CACTI 4.1 to measure the access time and the
power.

1. In simplescalar(sim-cache), I changed cache configuration at command line

The cache config parameter <config> has the following format:

<name>:<nsets>:<bsize>:<assoc>:<repl>

<name> - name of the cache being defined

<nsets> - number of sets in the cache

<bsize> - block size of the cache

<assoc> - associativity of the cache

<repl> - block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random

-cache:il1 il1:1024:32:1:l to configure L1 I-cache to 32K size, with 32 byte block size
and direct-mapped cache.

-cache:dl1 dl1:512:32:2:l to configure L1 I-cache to 32K size, with 32 byte block size
and 2-way set-associative cache.

The following results was obtained:

benchmarks/ammp cache accesses cache hits cache misses
I-cache(32K) 800000 779825 20175
I-cache(16K) 800000 740511 59489
I-cache(8K) 800000 623981 176019

benchmarks/ammp cache accesses cache hits cache misses
D-cache(32K) 262846 261377 1468
D-cache(16K) 262846 260014 2832
D-cache(8K) 262846 257630 5216

7

To test the access time, the total dynamic read power and the leakage read/write
power I used CACTI 4.1.

The command line cacti configuration is: cacti C B A TECH Nsubbanks, where C for
cache size, B for cache block size, A for associativity, TECH for the transistor size,
and Nsubbanks for the number of memory banks.

For example: type ./cacti 32768 32 1 0.13 1 to simulate 32K cache with 32 byte,
direct-mapped cache.

8

Excaminiation procedure of the second part

To caclculate the misses rate I used the sim-cache tool which is a part of the
SimpleScalar, changing the cache parameters to configure it as direct mapped(one-
way), 2-way, 4-way, and 8-way set associtive. Then re-run sim-cache on my four
SPEC 2000 benchmarks, then I ran the CACTI 4.1 to measure the access time and the
power for each configration.

9

10

Conclusions

Nowadays, it is really difficult to build a memory system to keep on track with faster
CPUs. It is the principle of locality that gives a chance to overcome the long latency
of memory access. As the gap between processor speed and memory speed is
expanding, it is very important to consider tradeoffs for power and performance of
cache memories. The simulation in this report demonstrating cache design tradeoff.
Data examples calculated using SimpleScalar and CACTI demonstrate these tradeoff.
For future work, more accurate performance prediction will be possible by combining
multi-level cache simulator with power consideration to calculate miss penalty
effectively. In addition to performance and cost estimation, it is important to estimate
the complete design including other factors such as power consumption in cache
memory design.

References

[1] John L. Hennessy, David A. Patterson. "Computer Architecture: A Quantitative
Approach", 4th Edition .

[2] This link from where I copy a figure about the the relation between the miss rate
and the cache size (date: 18-Jan-2010)
http://en.wikipedia.org/wiki/CPU_cache .

[3] Todd Austen, Eric Larson, Dan Ernst. SimpleScalar: an infrastructure for
computer system modeling. February 2002 IEEE.

[4] This link from where I retrieved some information about SimpleScalar simulator
(date: 18-Jan-2010)
http://www.simplescalar.com.

[5] This link from where I downloaded some PISA binaries of SPEC cpu2000
benchmark (date: 18-Jan-2010)
 http://www.simplescalar.com/benchmarks.html.

[6] This link from where I retrieved some information about the HP CACTI 4.1
simulator (date: 18-Jan-2010)
 http://www.hpl.hp.com/research/cacti/

[7] David Tarjan, Shyamkumar Thoziyoor, Norman P. Jouppi. CACTI 4.0 . HP
Laboratories Palo Alto. HPL-2006-86.

[8] This link from where I downloaded the required inputs for my SPEC cpu2000
benchmark binaries(date: 18-Jan-2010)
http://students.cs.tamu.edu/baiksong/teaching/cpsc614/spec2000args.tgz

[9] This link from where I retrieved some information about the floating point ammp
SPEC cpu2000 benchmark (date: 18-Jan-2010)
 http://www.spec.org/cpu2000/CFP2000/188.ammp/docs/188.ammp.html

http://www.amazon.com/John-L.-Hennessy/e/B000APA2GC/ref=ntt_athr_dp_pel_pop_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_pop_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=John%20L.%20Hennessy
http://authorcentral.amazon.com/gp/landing/ref=ntt_atc_dp_pel_1
http://www.hpl.hp.com/research/cacti/
http://students.cs.tamu.edu/baiksong/teaching/cpsc614/spec2000args.tgz

11

[10] This link from where I retrieved some information about the integer parser SPEC
cpu2000 benchmark (date: 18-Jan-2010)
http://www.spec.org/cpu2000/CINT2000/197.parser/docs/197.parser.html

[11] This link from where I retrieved some information about the integer bzip2 SPEC
cpu2000 benchmark (date: 18-Jan-2010)
http://www.spec.org/cpu2000/CINT2000/256.bzip2/docs/256.bzip2.html

[12] This link from where I retrieved some information about the floating point
equake SPEC cpu2000 benchmark (date: 18-Jan-2010)
 http://www.spec.org/cpu2000/CFP2000/183.equake/docs/183.equake.html

http://www.spec.org/cpu2000/CINT2000/256.bzip2/docs/256.bzip2.html

