University of Jordan
Computer Engineering Department
CPE439: Computer Design Lab

Experiment 6: Data Memory Module

It is required to construct and test a Verilog module for a data memory suitable for incorporation in
your PIC16F84A design. You should use modular design where you start by building and testing
low-level modules using the library modules defined in Lib439.v, then use the low-level modules in
larger modules. You can also reuse some of the modules that you have designed in previous
experiments.

Data Memory
The data memory is partitioned into two

areas. The first is the Special Function Fje Address File Address
Registers (SFR) area, while the second is 00h | Indirectaddr. | Indirectaddr. | B80h
the General Purpose Registers (GPR)
area. The SFRs control the operation of 01h 81h
the device. 02h B2h

03h STATUS STATUS 83h
Portions of data memory are banked. The 04h ESR ESR 34h
ban_ked areas of the SFR are f_or the 05h PORTA TRISA ath
registers that control the peripheral
functions. Banking requires the use of 08h PORTE TRISB 86h
control bit (RPO) for bank selection. This 07h — — 87h
control bit is located in the STATUS 08h 88h
Register. Figure 1 shows the data 05h 89h
memory map organization. 0Ah 3Ah
The entire data memory can be accessed Sgg :E:
either directly using the absolute address
of each register file or indirectly through
the File Select Register (FSR). Indirect

i .) 68
addressing occurs when location 00h is General Mapped
accessed. s | e
(SRAM)

The data memory is partitioned into two
banks which contain the general purpose
registers and the special function
registers. Bank 0 is selected by clearing
the RPO bit (STATUS<5>). Setting the 4Fh CFh
RPO bit selects Bank 1. Each Bank 50h DOh

extends up to 4Fh. The first twelve
locations of each Bank are reserved for
the Special Function Registers. The
remainders are General Purpose
Registers.

Figure 1: Data Memory Map Organization

Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly
through the FSR. The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example,
addressing location 0Ch or 8Ch will access the same GPR. The Special Function Registers (Table 1)
are used by the CPU and Peripheral functions to control the device operation.

Table 1: Special Function Registers

Value on
Addr Name Bit7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit0 Power-on
RESET

Bank 0
00h |INDF Uses contents of FSR to address Data Memory (not a physical register) | ---- ----
01h
02h

03h |sTATUS®@ RPO z DC C 00— —xxx

04h |FSR Indirect Data Memory Address Pointer O XXKX XXKX
05h |PORTAW® — — — |RrRA4 RA3 RA2 | RA1 RAD |---x xxxx
osh |[PORTB®) RB7 RB6 RB5 RB4 RB3 RB2 | RB1 |RBC XXXX XXXX
07h — Unimplemented location —

08h
0%9h
0Ah
0Bh
Bank 1
80h |INDF Uses Contents of FSR to address Data Memory (not a physical register) | ---- ----
81h '

82h
83h |STATUS @ RPO z DC c —-0- -xxx

84h |FSR Indirect data memory address pointer 0 XXXX XXXX
85h [TRISA — — | — |PORTA Data Direction Register ---1 1111
86h |TRISB PORTB Data Direction Register 1111 1111
87h — Unimplemented location, read as '0' —

88h
89h
0Ah

0Bh
Legend: =x =unknown, u =unchanged. - = unimplemented, read a;-.* '0", g = value depends on condition

This module should have Verilog code similar to the following code:
module DataMemory (DataOut, PortA, PortB, C,

Clock, Reset, C in, DC in, Z in, C _en, DC en, Z en,
Addr, Dataln, DataWrite);

output [7:0] DataOut;

inout [4:0] PortA;

inout [7:0] PortB;

output C;

input Clock, Reset, C in, DC in, Z in, C en, DC en, Z en;

input [6:0] Addr;

input [7:0] Dataln;

input DataWrite;

// implementation details are left to the student

endmodule

The following figure shows the top-level design of this data memory module.

7

Addr
L |
N7

-1 Decoder
Should be implemented
8 in the next experiment
DatalNe——e 7 P
Y

GPRs
68 x 8 FSR SFR 1 SFR 5
Y 8

I »—) DataOut

In this experiment, you need to implement address multiplexer, decoder circuit, GPRs, and tri-state
butters. The circuits of the SFRs should be left to Experiment 7.

General Purpose Registers

The GPRs should be implemented using behavioral modeling as follows:
//
// General Purpose Registers, 68 x 8 bits
//
module GPRs (Dout, clock, wt, addr, Din);
output [7:0] Dout;
reg [7:0] Dout;
input clock, wt;
input [6:0] addr;
input [7:0] Din;

reg [7:0] MA [79:0]; //storage array

always @ (addr or MA[addr])
if ((addr > 7'hOB) && (addr < 77h50))
#6 Dout = MA[addr];

always @ (posedge clock)
if ((wt == 1) && (addr > 7'h0B) && (addr < 7'h50))
#1 MA[addr] = Din;
endmodule

Report

Your report should include detailed design, Verilog code for all modules including your test
modules, and timing diagram that demonstrates the correct operation of your design.

To demonstrate the correct operation of you design, test your design using the input signals shown
in the following table.

Clock Reset Addr Dataln DataWrite
OtoltoO 1 000 0000 | 0000 0000 0
OtoltoO 0 000 0100 | 0001 0011 1
OtoltoO 0 001 0011 | 00100111 1
OtoltoO 0 000 0000 | 0000 0000 0
OtoltoO 0 000 1111 | 01010101 1
OtoltoO 0 000 1111 | 0000 0000 0

