
 1

University of Jordan
Computer Engineering Department

CPE439: Computer Design Lab

Experiment 3: 8-Bit ALU

It is required to construct and test a Verilog module for an 8-bit arithmetic and logic unit (ALU)

suitable for incorporation in your PIC16F84A design. This ALU should use the adder/subtractor

you have built in Experiment 2. You should use modular design where you start by building and

testing low-level modules using the library modules defined in Lib439.v, then use the low-level

modules in larger modules. The symbol and function of this ALU are shown below. Where “C” is

the Carry/Borrow’ bit, “DC” is the Digit Carry/Borrow’ bit, “Z” is the Zero bit, “Cin” is the carry in

bit used in the rotate operations, “x” is an input bit, and “b” is the bit select field.

m Function

0000 B + A Add

0001 B + 1 Increment

0010 B – A Subtract

0011 B – 1 Decrement

0100 A • B And

0101 A + B Or

0110 A + B Xor

0111 B Complement

1000 B Move B

1001 B Rotate left

1010 B Rotate right

1011 B Swap nibbles

1100 0 Clear

1101 A Move A

1110 B ← x Bit modify: x should replace bit

B and the modified B should be

copied to the output.

1111 B == x Bit test: Set Z if bit B equals x.

We suggest that you build this unit using four smaller modules: arithmetic, logic, rotate, and bit

module.

Multiplexer
Since there are 4 modules each has four functions, we suggest that you build a 4-to-1 multiplexer

module that has Verilog code similar to the following code:

module Mux_4_to_1(Output, s, i0, i1, i2, i3);

 output Output;

 input [1,0] s;

 input i0, i1, i2, i3;

 // implementation details are left to the student

 …

endmodule

8

8

8

m (operation)

Result

B

A

ALU

4

3

Cin
x

b

3

C, DC, Z

 2

This module should be used to build an 8-bit multiplexer similar to the following code:

module Mux_4_to_1_8b(Output, s, i0, i1, i2, i3);

 output [7:0] Output;

 input [1,0] s;

 input [7:0] i0, i1, i2, i3;

 // implementation details are left to the student

 …

endmodule

Decoder
To implement the bit modify and test operations, we suggest that you build a 3-to-8 decoder that is

similar to the following code:

module Decoder_3_to_8(Output, Input);

 output [7,0] Output;

 input [2,0] Input;

 // implementation details are left to the student

 …

endmodule

8-Bit ALU
After building the logic, rotate, and bit modules, assemble the four modules using a 4-to-1

multiplexer. Your ALU module should have Verilog code similar to the following code:

module ALU(Result, C, DC, Z, A, B, m, b, Cin, x);

 output [7:0] Result;

 output C, DC, Z;

 input [7:0] A, B;

 input [3:0] m;

 input [2:0] b;

 input Cin, x;

 // implementation details are left to the student

 …

endmodule

Report
Your report should include detailed design, Verilog code for all modules including your test

modules, and timing diagram that demonstrates the correct operation of your design. Also estimate

the maximum delay expected for you design.

