
1 of 4

0907753 Natural Languages Processing (Spring 2024)
Midterm Exam

لاسم: ا KEY رقم التسجيل:

==

Exam Instructions:

Duration: 90 minutes

Materials Allowed: Open book and notes. No electronic devices permitted.

Instructions: Please answer all three problems in the spaces provided. Each problem is worth 10 marks.

Ensure clarity and conciseness in your answers.

==

P1. You are given the following text sequence:

text = "Today’s NLP technologies are increasingly sophisticated and

accessible. They're transforming how we interact with technology on a “daily”

basis. Isn’t it wonderful?"

• Write a Python function named preprocess_text that takes this text as input and returns a list of

words after applying the following preprocessing steps:

1. Convert the text to lowercase.

2. Replace smart quotes with standard versions (e.g., to ' and ").

3. Remove all punctuation.

4. Remove stopwords.

• You can use the spacy library for punctuation and stopwords removal.

• Example Output:

o today nlp technologies increasingly sophisticated …

Solution:
import spacy

nlp = spacy.load("en_core_web_sm")

def preprocess_text(text):

 # Convert text to lowercase

 text = text.lower()

 # Replace smart quotes

 replace_chars = {

 "’": "'", # Right single quotation mark

 "‘": "'", # Left single quotation mark

 "“": '"', # Left double quotation mark

 "”": '"' # Right double quotation mark

 }

 for char, replace_with in replace_chars.items():

 text = text.replace(char, replace_with)

 # Tokenize text

 doc = nlp(text)

 # Remove all punctuation

 filtered_doc = [token for token in doc if not token.is_punct]

 # Remove stopwords

 filtered_tokens = [token.text for token in filtered_doc

2 of 4

 if not token.is_stop]

 filtered_text = " ".join(filtered_tokens)

 return filtered_text

Example usage

text = "Today’s NLP technologies are increasingly sophisticated and

accessible. They're transforming how we interact with technology on a

daily basis. Isn’t it wonderful?"

print(preprocess_text(text))

3 of 4

P2. You are provided with two text sequences:

Text1 = "Machine learning provides systems the ability to automatically learn

and improve from experience."

Text2 = "Artificial intelligence enables computers to understand complex data

and make decisions."

• Write a Python function named calculate_similarity that computes the cosine similarity

between these two texts after transforming them into TF-IDF vectors and reducing their

dimensionality using PCA to two topics each.

• You can use the TfidfVectorizer from scikit-learn’s sklearn.feature_extraction.text

to generate TF-IDF vectors and PCA from sklearn.decomposition module to perform

dimensionality reduction. Use cosine_similarity from sklearn.metrics.pairwise to

compute the similarity.

• Expected output: Single floating-point number representing the cosine similarity between the

reduced vectors of the two texts.

• When applying PCA, fit the model on the TF-IDF matrix of both texts to capture the variance across

both before transforming them.

Solution:
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.decomposition import PCA

from sklearn.metrics.pairwise import cosine_similarity

def calculate_similarity(text1, text2):

 # Initialize the TF-IDF Vectorizer

 vectorizer = TfidfVectorizer()

 # Fit and transform the texts into TF-IDF vectors

 tfidf_matrix = vectorizer.fit_transform([text1, text2])

 # Initialize PCA and reduce the dimensionality to 2 components

 pca = PCA(n_components=2)

 reduced_tfidf_matrix = pca.fit_transform(tfidf_matrix.toarray())

 # Compute the cosine similarity between the two reduced vectors

 # Since we have two vectors, cosine_similarity returns a 2x2 matrix,

 # we are interested in the similarity between text1 and text2

 similarity = cosine_similarity(reduced_tfidf_matrix)

 return similarity[0, 1] # return the similarity of 1st & 2nd text

Example texts

text1 = "Machine learning provides systems the ability to automatically

learn and improve from experience."

text2 = "Artificial intelligence enables computers to understand complex

data and make decisions."

Calculate the similarity

similarity_score = calculate_similarity(text1, text2)

print("Cosine Similarity:", similarity_score)

4 of 4

P3. The following Python code loads and preprocesses a labeled text dataset. This dataset is provided in the

file named training_data.csv, which has two columns: text (the text sequence) and label (the

category label). The preprocessing steps include preparing the labels, tokenization, and padding.

import pandas as pd

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils import to_categorical

Load the data

data = pd.read_csv('training_data.csv')

texts = data['text'].values

labels = data['label'].values

Convert labels to categorical

labels = to_categorical(labels, num_classes=4)

Tokenize text

tokenizer = Tokenizer()

tokenizer.fit_on_texts(texts)

vocab_size = len(tokenizer.word_index) + 1

sequences = tokenizer.texts_to_sequences(texts)

Find the maximum length of any text in the dataset

max_length = max(len(s) for s in sequences)

Pad sequences to ensure uniform length

sequences_padded = pad_sequences(sequences, maxlen=max_length)

• Complete this code to build a Recurrent Neural Network (RNN) using Keras to classify text

sequences into one of four categories. Your RNN must have the following architecture:

1. An embedding layer of dimensionality 100

2. Two LSTM layers each with 128 cells

3. An output layer

Solution:
Build the RNN model architecture

model = Sequential([

 Embedding(input_dim=vocab_size, output_dim=100,

 input_length=max_length, mask_zero=True),

 LSTM(128, return_sequences=True),

 LSTM(128),

 Dense(4, activation='softmax')

])

<Good Luck>

