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0907753 Natural Languages Processing (Spring 2024) 
Midterm Exam 

 

لاسم: ا KEY رقم التسجيل:   

============================================================================ 

Exam Instructions: 

Duration: 90 minutes 

Materials Allowed: Open book and notes. No electronic devices permitted. 

Instructions: Please answer all three problems in the spaces provided. Each problem is worth 10 marks. 

Ensure clarity and conciseness in your answers. 

============================================================================ 

 

P1. You are given the following text sequence: 

text = "Today’s NLP technologies are increasingly sophisticated and 

accessible. They're transforming how we interact with technology on a “daily” 

basis. Isn’t it wonderful?" 

• Write a Python function named preprocess_text that takes this text as input and returns a list of 

words after applying the following preprocessing steps: 

1. Convert the text to lowercase. 

2. Replace smart quotes with standard versions (e.g., to ' and "). 

3. Remove all punctuation. 

4. Remove stopwords. 

• You can use the spacy library for punctuation and stopwords removal. 

• Example Output: 

o today nlp technologies increasingly sophisticated … 

 

Solution: 
import spacy 

 

nlp = spacy.load("en_core_web_sm") 

 

def preprocess_text(text): 

    # Convert text to lowercase 

    text = text.lower() 

 

    # Replace smart quotes 

    replace_chars = { 

        "’": "'",  # Right single quotation mark 

        "‘": "'",  # Left single quotation mark 

        "“": '"',  # Left double quotation mark 

        "”": '"'   # Right double quotation mark 

    } 

 

    for char, replace_with in replace_chars.items(): 

        text = text.replace(char, replace_with) 

 

    # Tokenize text 

    doc = nlp(text) 

 

    # Remove all punctuation 

    filtered_doc = [token for token in doc if not token.is_punct] 

 

    # Remove stopwords 

    filtered_tokens = [token.text for token in filtered_doc 
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                       if not token.is_stop] 

 

    filtered_text = " ".join(filtered_tokens) 

    return filtered_text 

 

# Example usage 

text = "Today’s NLP technologies are increasingly sophisticated and 

accessible. They're transforming how we interact with technology on a 

daily basis. Isn’t it wonderful?" 

print(preprocess_text(text)) 
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P2. You are provided with two text sequences: 

Text1 = "Machine learning provides systems the ability to automatically learn 

and improve from experience." 

Text2 = "Artificial intelligence enables computers to understand complex data 

and make decisions." 

• Write a Python function named calculate_similarity that computes the cosine similarity 

between these two texts after transforming them into TF-IDF vectors and reducing their 

dimensionality using PCA to two topics each. 

• You can use the TfidfVectorizer from scikit-learn’s sklearn.feature_extraction.text 

to generate TF-IDF vectors and PCA from sklearn.decomposition module to perform 

dimensionality reduction. Use cosine_similarity from sklearn.metrics.pairwise to 

compute the similarity. 

• Expected output: Single floating-point number representing the cosine similarity between the 

reduced vectors of the two texts. 

• When applying PCA, fit the model on the TF-IDF matrix of both texts to capture the variance across 

both before transforming them. 

 

Solution: 
from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.decomposition import PCA 

from sklearn.metrics.pairwise import cosine_similarity 

 

def calculate_similarity(text1, text2): 

    # Initialize the TF-IDF Vectorizer 

    vectorizer = TfidfVectorizer() 

 

    # Fit and transform the texts into TF-IDF vectors 

    tfidf_matrix = vectorizer.fit_transform([text1, text2]) 

 

    # Initialize PCA and reduce the dimensionality to 2 components 

    pca = PCA(n_components=2) 

    reduced_tfidf_matrix = pca.fit_transform(tfidf_matrix.toarray()) 

 

    # Compute the cosine similarity between the two reduced vectors 

    # Since we have two vectors, cosine_similarity returns a 2x2 matrix, 

    # we are interested in the similarity between text1 and text2 

    similarity = cosine_similarity(reduced_tfidf_matrix) 

 

    return similarity[0, 1]  # return the similarity of 1st & 2nd text 

 

# Example texts 

text1 = "Machine learning provides systems the ability to automatically 

learn and improve from experience." 

text2 = "Artificial intelligence enables computers to understand complex 

data and make decisions." 

 

# Calculate the similarity 

similarity_score = calculate_similarity(text1, text2) 

print("Cosine Similarity:", similarity_score) 
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P3. The following Python code loads and preprocesses a labeled text dataset. This dataset is provided in the 

file named training_data.csv, which has two columns: text (the text sequence) and label (the 

category label). The preprocessing steps include preparing the labels, tokenization, and padding. 

 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import Embedding, LSTM, Dense 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.utils import to_categorical 

 

# Load the data 

data = pd.read_csv('training_data.csv') 

texts = data['text'].values 

labels = data['label'].values 

 

# Convert labels to categorical 

labels = to_categorical(labels, num_classes=4) 

 

# Tokenize text 

tokenizer = Tokenizer() 

tokenizer.fit_on_texts(texts) 

vocab_size = len(tokenizer.word_index) + 1 

sequences = tokenizer.texts_to_sequences(texts) 

 

# Find the maximum length of any text in the dataset 

max_length = max(len(s) for s in sequences) 

 

# Pad sequences to ensure uniform length 

sequences_padded = pad_sequences(sequences, maxlen=max_length) 

 

• Complete this code to build a Recurrent Neural Network (RNN) using Keras to classify text 

sequences into one of four categories. Your RNN must have the following architecture: 

1. An embedding layer of dimensionality 100 

2. Two LSTM layers each with 128 cells 

3. An output layer  

 

Solution: 
# Build the RNN model architecture 

model = Sequential([ 

    Embedding(input_dim=vocab_size, output_dim=100, 

              input_length=max_length, mask_zero=True), 

    LSTM(128, return_sequences=True), 

    LSTM(128), 

    Dense(4, activation='softmax') 

]) 

 

 

<Good Luck> 


