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Reference 1

• Chapter 16: Natural Language Processing
 with RNNs and Attention

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3 
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Reference 2

• Chapter 10: Sequence-to-sequence models
 and attention

• H. Lane, C. Howard, and H. Hapke, Natural Language 
Processing in Action: Understanding, analyzing, and 
generating text with Python, Manning, 2019.
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1. Generating Shakespearean Text Using a 
Character RNN

Procedure

1. Creating the training dataset

2. Building and training the char-RNN model

3. Generating fake Shakespearean text

4. Stateful RNN
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1.1 Creating the Training Dataset

1. Download and read shakespeare.txt.

2. Split into characters and encode the characters.

3. Convert the long sequence of character IDs into input/target 
window pairs.
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Download and read shakespeare.txt.
import tensorflow as tf

shakespeare_url = "https://homl.info/shakespeare"
                                       # shortcut URL
filepath = tf.keras.utils.get_file("shakespeare.txt",
                                    shakespeare_url)
with open(filepath) as f:
    shakespeare_text = f.read()

print(shakespeare_text[:80])

First Citizen:

Before we proceed any further, hear me speak.

All:

Speak, speak.

7



Split into characters and encode the characters.

text_vec_layer = 

tf.keras.layers.TextVectorization(split="character",

                                  standardize="lower")

text_vec_layer.adapt([shakespeare_text])

encoded = text_vec_layer([shakespeare_text])[0]

encoded -= 2  # drop tokens 0 (pad) and 1 (unknown),

              #  which we will not use

n_tokens = text_vec_layer.vocabulary_size() – 2

              # number of distinct chars = 39

dataset_size = len(encoded)  

              # total number of chars = 1,115,394
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Convert the long sequence of character IDs into 
input/target window pairs.
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Convert the long sequence of character IDs into 
input/target window pairs.

# Function to convert a long sequence of character IDs
#   into a dataset of input/target window pairs
def to_dataset(sequence, length, shuffle=False,
               seed=None, batch_size=32):
    ds = tf.data.Dataset.from_tensor_slices(sequence)
    ds = ds.window(length + 1, shift=1,
                   drop_remainder=True)
    ds = ds.flat_map(lambda window_ds:
                     window_ds.batch(length + 1))
    if shuffle:
        ds = ds.shuffle(100_000, seed=seed)
    ds = ds.batch(batch_size)
    return ds.map(lambda window: (window[:, :-1],
                  window[:, 1:])).prefetch(1)
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Convert the long sequence of character IDs into 
input/target window pairs.

length = 100

tf.random.set_seed(42)

train_set = to_dataset(encoded[:1_000_000],

                       length=length, shuffle=True,

                       seed=42)

valid_set = to_dataset(encoded[1_000_000:1_060_000],

                       length=length)

test_set = to_dataset(encoded[1_060_000:],

                      length=length)
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1.2 Building and Training the Char-RNN 
Model
model = Sequential([
    Embedding(input_dim=n_tokens, output_dim=16),
    GRU(128, return_sequences=True),
    Dense(n_tokens, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
              optimizer="nadam",
              metrics=["accuracy"])
model_ckpt = tf.keras.callbacks.ModelCheckpoint(
    "my_shakespeare_model", monitor="val_accuracy",
    save_best_only=True)
history = model.fit(train_set,
                    validation_data=valid_set,
                    epochs=10,
                    callbacks=[model_ckpt])
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1.3 Generating Fake Shakespearean Text

• RNN output generation is often deterministic, producing the most probable 
next token.

• Deterministic outputs may lead to repetitive or predictable sequences.
• Randomness can be introduced to diversify output and improve creativity.
• Temperature parameter controls the level of randomness in output 

generation.
• Low temperature

• Produces more confident predictions.
• Higher probability tokens are favored, leading to more deterministic output.

• High temperature
• Increases randomness.
• Allows lower probability tokens to have a higher chance of being selected.
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Direct text generation

shakespeare_model = tf.keras.Sequential([
    text_vec_layer,
    tf.keras.layers.Lambda(lambda X: X - 2), # no PAD or UNK
    model
])

y_proba = shakespeare_model.predict(
           ["To be or not to b"])[0, -1]
y_pred = tf.argmax(y_proba)
         # choose the most probable character ID
text_vec_layer.get_vocabulary()[y_pred + 2]
e

# Problem: Predicts the same sequence always

14



Functions to pick the next char and extend a text.

def next_char(text, temperature=1):

    y_proba = shakespeare_model.predict([text])[0, -1:]

    rescaled_logits = tf.math.log(y_proba) / temperature

    char_id = tf.random.categorical(rescaled_logits,

                                    num_samples=1)[0, 0]

    return text_vec_layer.get_vocabulary()[char_id + 2]

def extend_text(text, n_chars=50, temperature=1):

    for _ in range(n_chars):

        text += next_char(text, temperature)

    return text

15



Experimenting with temperature

print(extend_text("To be or not to be", temperature=0.01))

To be or not to be the duke
as it is a proper strange death,
and the

print(extend_text("To be or not to be", temperature=1))

To be or not to behold?
second push:
gremio, lord all, a sistermen,

print(extend_text("To be or not to be", temperature=100))

To be or not to bef ,mt'&o3fpadm!$
wh!nse?bws3est--vgerdjw?c-y-ewznq

16



1.4 Stateful RNN

• Stateless RNNs: at each training iteration the model starts with a 
hidden state full of zeros.

• Stateful RNN: preserve this final state after processing a training 
batch and use it as the initial state for the next training batch.

• The model learns long-term patterns despite only backpropagating 
through short sequences.

model = tf.keras.Sequential([
    tf.keras.layers.Embedding(input_dim=n_tokens,
                              output_dim=16,
                              batch_input_shape=[1, None]),
    tf.keras.layers.GRU(128, return_sequences=True,
                        stateful=True),
    tf.keras.layers.Dense(n_tokens, activation="softmax")
])
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Preparing a dataset of consecutive sequence 
fragments for a stateful RNN
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Preparing a dataset of consecutive sequence 
fragments for a stateful RNN
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def to_dataset_for_stateful_rnn(sequence, length):

    ds = tf.data.Dataset.from_tensor_slices(sequence)

    ds = ds.window(length + 1, shift=length,

                   drop_remainder=True)

    ds = ds.flat_map(lambda window: window.batch(length

                      + 1)).batch(1)

    return ds.map(lambda window: (window[:, :-1],

                   window[:, 1:])).prefetch(1)



Training the stateful RNN
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# At the end of each epoch, we need to reset the states before

#  we go back to the beginning of the text.

class ResetStatesCallback(tf.keras.callbacks.Callback):

    def on_epoch_begin(self, epoch, logs):

        self.model.reset_states()

model.compile(loss="sparse_categorical_crossentropy",

              optimizer="nadam", metrics=["accuracy"])

history = model.fit(stateful_train_set,

                    validation_data=stateful_valid_set,

                    epochs=10, callbacks=[ResetStatesCallback(),

                                          model_ckpt])
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2. Sentiment Analysis

• IMDb movie reviews

Procedure

1. Creating the training dataset

2. Building and training the RNN model

3. Masking

4. Reusing pretrained embeddings and language models
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2.1 Creating the training dataset

import tensorflow_datasets as tfds

# The IMDb dataset has 50,000 movie reviews in English

#  25,000 for training, 25,000 for testing

raw_train_set, raw_valid_set, raw_test_set = tfds.load(

    name="imdb_reviews",

    split=["train[:90%]", "train[90%:]", "test"],

    as_supervised=True

)

train_set = raw_train_set.shuffle(5000,

    seed=42).batch(32).prefetch(1)

valid_set = raw_valid_set.batch(32).prefetch(1)

test_set = raw_test_set.batch(32).prefetch(1)
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2.1 Creating the training dataset

# Simple tokenization using spaces for token boundaries

# Limit the vocabulary to 1,000 tokens

# Very rare words are not important for this task

vocab_size = 1000

text_vec_layer = 

tf.keras.layers.TextVectorization(max_tokens=vocab_size)

text_vec_layer.adapt(train_set.map(lambda reviews,

                                   labels: reviews))
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2.2 Building and training the RNN model

embed_size = 128

model = tf.keras.Sequential([

    text_vec_layer,

    tf.keras.layers.Embedding(vocab_size, embed_size),

    tf.keras.layers.GRU(128),

    tf.keras.layers.Dense(1, activation="sigmoid")

])

model.compile(loss="binary_crossentropy",

              optimizer="nadam", metrics=["accuracy"])

history = model.fit(train_set,

                    validation_data=valid_set, epochs=2)
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2.3 Masking

• The accuracy of the previous model is only about 50%.

• When TextVectorization converts reviews to sequences of token 
IDs, it pads the shorter sequences using the padding token (with ID 
0).

• When the GRU layer  goes through many padding tokens, it ends up 
forgetting what the review was about!

• Masking makes the model ignore the padding tokens.
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2.3 Masking

# Validation accuracy = 87% after 5 epochs

embed_size = 128

model = tf.keras.Sequential([

    text_vec_layer,

    tf.keras.layers.Embedding(vocab_size, embed_size,

                              mask_zero=True),

    tf.keras.layers.GRU(128, dropout=0.2),

    tf.keras.layers.Dense(1, activation="sigmoid")

])
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2.4 Reusing pretrained embeddings and 
language models
• Can use Google’s Universal Sentence Encoder

• Task: Encodes text into high-dimensional vectors for various NLP tasks 
like classification, similarity, clustering.

• Input: Variable length English text (sentences, phrases, short 
paragraphs).

• Output: 512-dimensional vector capturing text meaning.

• Training: Optimized for sentences, trained on diverse data sources and 
tasks for broad NLP applicability.

• Advantage: Models meaning of entire sequences, not just individual 
words (compared to word embedding models).

• Available on TensorFlow Hub Library (https://tensorflow.org/hub). 
28
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2.4 Reusing pretrained embeddings and 
language models
# Validation accuracy = 90% after 10 epochs
import os
import tensorflow_hub as hub

os.environ["TFHUB_CACHE_DIR"] = "my_tfhub_cache"
url = "https://tfhub.dev/google/universal-sentence-
encoder/4"
model = tf.keras.Sequential([
    hub.KerasLayer(url, trainable=True, dtype=tf.string,
                   input_shape=[]),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(1, activation="sigmoid")
])
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3. An Encoder–Decoder Network for Neural 
Machine Translation
• Encoder: Analyzes source sentence (e.g., English). Uses RNNs (like 

LSTMs) to capture word relationships and context. Summarizes the 
sentence into a “context vector.”

• Decoder: Generates target sentence (e.g., Spanish). Uses the context 
vector and predicts words one-by-one, considering previous 
predictions.

• Benefits
• High Accuracy: Captures complex sentence structures and context better than 

traditional methods.
• Flexible: Handles variable-length sentences and translates across different 

languages effectively.
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3. An Encoder–Decoder Network for Neural 
Machine Translation
• English to Spanish translation

Procedure

1. Creating the training dataset

2. Building and training the model

3. Translating English to Spanish

4. Bidirectional RNNs

5. Beam Search
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3.1 Creating the training dataset

url = 

"https://storage.googleapis.com/download.tensorflow.org/

data/spa-eng.zip"

path = tf.keras.utils.get_file("spa-eng.zip",

                               origin=url,

                               cache_dir="datasets",

                               extract=True)

text = (Path(path).with_name("spa-eng") /

        "spa.txt").read_text()
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3.1 Creating the training dataset
# TextVectorization layer doesn’t handle “¡” and “¿”
# Parse the sentence pairs, shuffle,
#  and split  into two separate lists

text = text.replace("¡", "").replace("¿", "")
pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle(pairs)
sentences_en, sentences_es = zip(*pairs)

for i in range(3):
    print(sentences_en[i], "=>", sentences_es[i])

How boring! => Qué aburrimiento!
I love sports. => Adoro el deporte.
Would you like to swap jobs? => Te gustaría que 
intercambiemos los trabajos?
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3.1 Creating the training dataset
vocab_size = 1000
max_length = 50
text_vec_layer_en = tf.keras.layers.TextVectorization(
    vocab_size, output_sequence_length=max_length)
text_vec_layer_es = tf.keras.layers.TextVectorization(
    vocab_size, output_sequence_length=max_length)
text_vec_layer_en.adapt(sentences_en)
text_vec_layer_es.adapt([f"startofseq {s} endofseq" for s in
                         sentences_es])

text_vec_layer_en.get_vocabulary()[:10]
['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']

text_vec_layer_es.get_vocabulary()[:10]
['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no', 
'tom', 'la']
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3.1 Creating the training dataset

# Split the sequences to train and validation sets

X_train = tf.constant(sentences_en[:100_000])

X_valid = tf.constant(sentences_en[100_000:])

X_train_dec = tf.constant([f"startofseq {s}" for s in

                           sentences_es[:100_000]])

X_valid_dec = tf.constant([f"startofseq {s}" for s in

                           sentences_es[100_000:]])

Y_train = text_vec_layer_es([f"{s} endofseq" for s in

                             sentences_es[:100_000]])

Y_valid = text_vec_layer_es([f"{s} endofseq" for s in

                             sentences_es[100_000:]])

37



3.2 Building and training the model

# Encoder

encoder_inputs = tf.keras.layers.Input(shape=[],

                                       dtype=tf.string)

embed_size = 128

encoder_input_ids = text_vec_layer_en(encoder_inputs)

encoder_embedding_layer = tf.keras.layers.Embedding(

    vocab_size, embed_size, mask_zero=True)

encoder_embeddings = encoder_embedding_layer(

    encoder_input_ids)

encoder = tf.keras.layers.LSTM(512, return_state=True)

encoder_outputs, *encoder_state = encoder(

    encoder_embeddings)
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3.2 Building and training the model
# Decoder

decoder_inputs = tf.keras.layers.Input(shape=[],

                                       dtype=tf.string)

decoder_input_ids = text_vec_layer_es(decoder_inputs)

decoder_embedding_layer = tf.keras.layers.Embedding(

    vocab_size, embed_size, mask_zero=True)

decoder_embeddings = decoder_embedding_layer(

    decoder_input_ids)

decoder = tf.keras.layers.LSTM(512,

                               return_sequences=True)

decoder_outputs = decoder(decoder_embeddings,

    initial_state=encoder_state)

output_layer = tf.keras.layers.Dense(vocab_size,

    activation="softmax")

Y_proba = output_layer(decoder_outputs)
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3.2 Building and training the model

model = tf.keras.Model(inputs=[encoder_inputs,

                               decoder_inputs],

                       outputs=[Y_proba])

model.compile(loss="sparse_categorical_crossentropy",

              optimizer="nadam", metrics=["accuracy"])

model.fit((X_train, X_train_dec), Y_train, epochs=10,

          validation_data=((X_valid, X_valid_dec),

                           Y_valid))
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3.3 Translating English to Spanish

• At inference time, the decoder is fed as input the word it just output 
at the previous time step.
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3.3 Translating English to Spanish

def translate(sentence_en):

    t = ""

    for word_idx in range(max_length):

        X = np.array([sentence_en])  # encoder input

        X_dec = np.array(["startofseq " + t])  # dec in

        y_proba = model.predict((X, X_dec))[0, word_idx]

                                   # last token's probas

        predicted_word_id = np.argmax(y_proba)

        predicted_word = text_vec_layer_es.get_vocabulary()

                                        [predicted_word_id]

        if predicted_word == "endofseq":

            break

        t += " " + predicted_word

    return t.strip()
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3.3 Translating English to Spanish

# It works with very short sentences.

translate("I like soccer")

'me gusta el fútbol'

# It struggles with longer sentences.

translate("I like soccer and also going to the beach")

'me gusta el fútbol y a veces mismo al bus'
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3.4 Bidirectional RNNs

• It is often useful to look ahead at 
the next words before encoding 
a given word, e.g., “the right 
arm”, “the right person”, and 
“the right to criticize.”

• Use two recurrent layers on the 
same inputs, one reading the 
words from left to right and the 
other reading them from right to 
left, then combine their outputs 
at each time step.
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3.4 Bidirectional RNNs

tf.random.set_seed(42)  # extra code – ensures 
reproducibility on CPU
encoder = tf.keras.layers.Bidirectional(
    tf.keras.layers.LSTM(256, return_state=True))

# concatenate the two short-term states
#  and the two long-term states
encoder_outputs, *encoder_state = encoder(
    encoder_embeddings)
encoder_state = [tf.concat(encoder_state[::2], axis=-1),
                 # short-term (0 & 2)
                 tf.concat(encoder_state[1::2], axis=-1)]
                 # long-term (1 & 3)

45

accuracy: 0.8577, val_accuracy: 0.6906
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3.5 Beam Search

• Greedy search in NMT picks the most likely word at each step, 
potentially leading to locally optimal but bad translations.

• Beam Search: Explores multiple translation options simultaneously. 
Keeps a fixed number of  (“beam width”) most probable partial 
translations at each step.

• Benefits
• Improved Fluency: Considers diverse contexts, reducing the risk of getting 

stuck in poor translations.

• More Accurate: Increases the chance of finding the overall best translation 
compared to greedy search.
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3.5 Beam search of width 3 to translate
 “I like soccer” to “me gusta el fútbol”
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4. Attention Mechanisms

• Introduction

• Additive Attention (Bahdanau)

• Multiplicative Attention – Dot (Luong)

• Multiplicative Attention - General (Luong)

• Attention Summary

• Keras Implementation of Dot Product Attention

• Attention Acts as Memory Retrieval Mechanism
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4.1 Attention Mechanisms – Introduction

• The traditional encoder-decoder 
model has a limitation: it 
encodes the entire input 
sequence into a single fixed-
length vector, which can be 
challenging for long sequences.

• Attention mechanisms address 
this limitation by allowing the 
decoder to focus on specific 
parts of the input sequence 
when generating the output.
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4.2 Additive Attention (Bahdanau)

• Send all the encoder’s outputs to 
the decoder.

• The decoder computes a weighted 
sum of all the encoder outputs.

• The weight α(t, i) is the weight of 
the ith encoder output at the tth 
decoder time step.

• For example, if α(3,2) is larger than 
α(3,0) and α(3,1), then the decoder 
pays more attention to the 
encoder’s output for Word 2.
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4.2 Additive Attention (Bahdanau)

• The alignment model (attention 
layer) is trained with the rest of the 
model.

• The dense layer outputs a score (or 
energy) for each encoder output.

• The softmax layer makes the 
weights for a given step add up to 
1.

• This is concatenative (or additive) 
attention as it concatenates the 
encoder output with the decoder’s 
previous hidden state.
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4.3 Multiplicative Attention - Dot (Luong)

• Measures the similarity between 
one of the encoder’s outputs and 
the decoder’s hidden state using 
the dot product.

• Uses the decoder’s current hidden 
state (h(t) rather than h(t–1)).

• Uses the output of the attention 
mechanism ሚ𝐡(𝑡) directly to 
compute the decoder’s predictions.
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4.4 Multiplicative Attention - General 
(Luong)
• The encoder outputs first go 

through a fully connected layer 
(without a bias term) before the 
dot products are computed.

• Luong et al. (2015) compared both 
dot product approaches with 
concatenative attention (adding a 
rescaling parameter vector v).

• The dot product variants 
performed better than 
concatenative attention.
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4.5 Attention Summary

• The energy e(t, i) is computed in 
one of the three mechanisms:
• Dot product
• General dot product
• Concatenative

• Softmax is used to get the 
attention α(t, i).

• Attention is used to find the 
decoder’s output as the 
weighted sum of the encoder’s 
output.
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4.6 Keras Implementation of Dot Product 
Attention
# need to pass all encoder’s outputs to the Attention layer

encoder = tf.keras.layers.Bidirectional(

    tf.keras.layers.LSTM(256, return_sequences=True,

                         return_state=True))

attention_layer = tf.keras.layers.Attention()

attention_outputs = attention_layer([decoder_outputs,

                                     encoder_outputs])

output_layer = tf.keras.layers.Dense(vocab_size,

                                     activation="softmax")

Y_proba = output_layer(attention_outputs)
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4.7 Attention Acts as Memory Retrieval 
Mechanism
• The Keras Attention expects a list 

as input, containing two or three 
items: the queries, the keys, and 
optionally the values.

• If you do not pass any values, then 
they are automatically equal to the 
keys.

• The decoder outputs are the queries, 
and the encoder outputs are both the 
keys and the values. For each decoder 
output (query), the attention layer 
returns a weighted sum of the 
encoder outputs (keys/values) that 
are most similar to the decoder 
output.
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5. Transformer Models

• Attention Is All You Need

• An Avalanche of Transformer Models

• Vision Transformers

• Hugging Face’s Transformers Library
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5.1 Attention Is All You Need

• Vaswani et al. (2017) created an architecture called the transformer, 
which significantly improved the state-of-the-art in NMT without 
using any recurrent or convolutional layers, just attention 
mechanisms.

✓Doesn’t suffer from the vanishing or exploding gradients problems as 
RNNs

✓It can be trained in fewer steps.

✓It’s easier to parallelize across multiple GPUs.

✓It can better capture long-range patterns.

60



5.1 Attention Is All You Need

• The left part is the encoder, and the 
right part is the decoder.

• Each embedding layer outputs a 3D 
tensor of shape [batch size, sequence 
length, embedding size].

• The encoder and the decoder contain 
modules that are stacked N times. In 
the paper, N = 6.

• The final encoder outputs are fed to 
the decoder modules.
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5.1 Attention Is All You Need

• The encoder’s role is to gradually 
transform the inputs until each word’s 
representation captures the meaning of 
the word, in the context of the sentence.

• The decoder’s role is to gradually 
transform each word representation in 
the translated sentence into a word 
representation of the next word in the 
translation.

• After going through the decoder, each 
word representation goes through a final 
Dense layer with a softmax activation 
function.
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Encoder Modules

• Skip connections

• The multi-head attention layer 
updates each word representation by 
attending to (i.e., paying attention to) 
all other words in the same sentence.

• Normalization layers

• Feedforward modules with two 
dense layers each (the first with ReLU 
activation, the second with no 
activation)
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Decoder Modules

• Skip connections

• The masked multi-head attention layer 
doesn’t attend to words located after it: 
it’s a causal layer.

• Multi-head attention layers

• Normalization layers

• The upper multi-head attention layer 
does cross-attention, not self-attention.

• Feedforward modules with two dense 
layers each (the first with ReLU 
activation, the second with no 
activation)
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Positional Encoding

• Dense 3D vectors that represent the position 
of each word in the sentence. The nth 
positional encoding is added to the word 
embedding of the nth word in each sentence.

• Same shape as the output of the embedding 
layer.

• The authors of the transformer paper used 
fixed positional encodings, based on the sine 
and cosine functions at different frequencies.

• Each word in the sentence has a unique 
positional encoding.

• The oscillating functions allows the model to 
learn relative positions.
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Transformers Video

• YouTube Video: But what is a GPT? Visual intro to transformers from 
3Blue1Brown

https://youtu.be/wjZofJX0v4M
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Multi-head Attention

• Based on the scaled dot-product 
attention layer; queries Q, keys K, 
and values V.

• Found efficiently using matrix 
multiplications.

• The multi-head attention layer uses H 
splits of the values, keys, and queries: 
this allows the model to apply 
multiple projections of the word 
representation into different 
subspaces, each focusing on a subset 
of the word’s characteristics.
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Attention Video

• YouTube Video: Attention in transformers, visually explained from 
3Blue1Brown

https://youtu.be/eMlx5fFNoYc
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5.2 An Avalanche of Transformer Models

• Introduction

• Generative Pre-trained Transformers (GPT)

• Bidirectional Encoder Representations from Transformers (BERT)

• Text-to-Text Transfer Transformer (T5)

• Large Language Model Meta AI (LLaMA)
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Introduction

• In 2016, Google Translate gradually replaced the older statistical 
machine translation approach with the newer neural-networks-based 
approach that included a seq2seq model combined by LSTM and the 
“additive” kind of attention mechanism.

• In 2017, the original (100M-sized) encoder-decoder transformer 
model with a faster (parallelizable or decomposable) attention 
mechanism was proposed in the "Attention is all you need" paper. 
The intent of the transformer model is to take a seq2seq model and 
remove its recurrent neural networks, but preserve its additive 
attention mechanism.
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Introduction

• In 2018, an encoder-only transformer was used in the (more than 1B-
sized) BERT model.

• In 2020, vision transformer and speech-processing convolution-
augmented transformer outperformed recurrent neural networks, 
previously used for vision and speech.

• In 2020, difficulties with converging the original transformer were 
solved by normalizing layers before (instead of after) multiheaded 
attention by Xiong et al. This is called pre-LN Transformer.

• In 2023, unidirectional ("autoregressive") transformers were being 
used in the (more than 100B-sized) GPT-3 and 
other OpenAI GPT models.
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Generative Pre-trained Transformers (GPT)

• In 2018, OpenAI GPT, “Improving Language 
Understanding by Generative Pre-Training.”

• Used self-supervised pretraining (predict the 
next token)

• A transformer of a stack of 12 modules (117 M)
• Then they fine-tuned it on various language 

tasks, using only minor adaptations for each task. 
• Text classification
• Entailment (whether sentence A imposes, involves, or 

implies sentence B as a necessary consequence)
• Similarity (e.g., “Nice weather today” is very similar to 

“It is sunny”)
• Question answering (given a few paragraphs of text 

giving some context, the model must answer some 
multiple-choice questions)
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Generative Pre-trained Transformers (GPT)

• In February 2019, GPT-2 with over 1.5B parameters.

• Zero-shot learning (ZSL), achieves good performance on many tasks 
without any fine-tuning.

• In May 2020, GPT-3, 175B parameters, 96 attention layers, each layer 
contains 96 attention heads.
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Model Architecture
Parameter 

count
Training data Release date Training cost

GPT-1
12-level, 12-headed Transformer 
decoder (no encoder), followed 

by linear-softmax.
117 M

BookCorpus:[34] 4.5 GB of 
text, from 7000 

unpublished books of 
various genres.

Jun 11, 2018
30 days on 8 

P600 GPUs, or 1 
peta FLOP/s-day

GPT-2
GPT-1, but with modified 

normalization
1.5 M

WebText: 40 GB of text, 8 
million documents, from 

45 million webpages 
upvoted on Reddit.

Feb 14, 
2019 (initial)

Tens of petaflop/s-
day

GPT-3
GPT-2, but with modification to 

allow larger scaling
175 B

499 billion tokens 
consisting 

of CommonCrawl (570 GB), 
WebText, English 

Wikipedia, and two book 
corpora

May 28, 2020
3640 petaflop/s-

day

GPT-3.5 Undisclosed 175 B Undisclosed Mar 15, 2022 Undisclosed

GPT-4

Also trained with both text 
prediction and RLHF; 

accepts both text and images as 
input

Undisclosed
. Estimated 

1.7 T
Undisclosed Mar 14, 2023

Undisclosed. 
Estimated 2.1e25 

FLOP
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Bidirectional Encoder Representations from 
Transformers (BERT)

• In 2018, Google BERT, “BERT: Pre-Training of Deep Bidirectional 
Transformers for Language Understanding.”

• BERTBASE: 12 encoders with 12 bidirectional self-attention heads 
totaling 110M parameters

• BERTLARGE: 24 encoders with 16 bidirectional self-attention heads 
totaling 340M parameters.

• Pre-trained on the Toronto BookCorpus (800M words) and English 
Wikipedia (2,500M words).
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Bidirectional Encoder Representations from 
Transformers (BERT)
• Used self-supervised pretraining (masked language model and next 

sentence prediction)
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Bidirectional Encoder Representations from 
Transformers (BERT)

• The DistilBERT model is a small and fast transformer model based on 
BERT.

• Trained using distillation: Transferring knowledge from a teacher 
model to a student one, which is usually much smaller than the 
teacher model.

• This is typically done by using the teacher’s predicted probabilities 
for each training instance as targets for the student.

• Distillation often works better than training the student from scratch 
on the same dataset as the teacher!
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Text-to-Text Transfer Transformer (T5)

• In 2019, Google T5, “Exploring the Limits of Transfer Learning with a 
Unified Text-to-Text Transformer.”

• Frames all NLP tasks as text-to-text, using an encoder–decoder 
transformer.
• “Translate English to Spanish: I like soccer”
• “Summarize:” followed by the paragraph
• “Classify:” followed by the sequence

• Sizes
• T5-Small: 60 M, 8 layers, 6 heads
• T5-Base: 220 M, 12 layers, 12 heads
• T5-Large: 770 M, 24 layers, 156 heads
• T5-3B: 3 B, 24 layers, 32 heads
• T5-11B: 11 B, 24 layers,  96 heads
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Text-to-Text Transfer Transformer (T5)

• In 2022, Google ByT5, “ByT5: Towards a Token-Free Future with Pre-trained 
Byte-to-Byte Models.”

• A variant of the original T5 model, specifically designed to handle raw bytes 
of text, no need for subword tokenization methods like SentencePiece.

• Tokenization Approach: ByT5 processes text at the byte level, UTF-8 
sequences. This allows it to handle an extremely wide range of human 
languages and other data types (like emojis and special characters) 
seamlessly.

• ByT5 is trained on a similar mix of tasks as T5, unsupervised and supervised 
tasks, derived from a dataset called “Colossal Clean Crawled Corpus” (C4).
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Pathways Language Model (PaLM)

• In 2022, Google PaLM, “PaLM: Scaling Language Modeling with 
Pathways.”

• Has 540 billion parameters, using over 6,000 TPUs. 

• Is a standard transformer, using decoders only.

• This model achieved incredible performance on all sorts of NLP tasks, 
particularly in natural language understanding (NLU).

• It’s capable of impressive feats, such as explaining jokes, giving 
detailed step-by-step answers to questions, and even coding.

• This is in part due to the model’s size, but also thanks to a technique 
called Chain of thought prompting.
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Large Language Model Meta AI (LLaMA)

• LLaMA is a family of large language models (LLMs) by Meta AI.

• Open Source

• LLaMA 1 released in February 2023.

• LLaMA 2 was release on July 18, 2023.

• LLaMA 3 is expected in May 2024.

• LLaMA uses the transformer architecture, the standard architecture 
for language modeling since 2018, with some changes.
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Model Sizes and Training
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Training LLaMA 2 Chat - Helpfulness and 
Safety
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Training Time and Cost
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Performance – Open-source LLMs
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Performance – Closed-source LLMs
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5.3 Vision Transformers

• In 2015, Visual Attention used a convolutional neural network and a 
decoder RNN with attention mechanism to generate captions.

• The decoder uses the attention model to focus on just the right part 
of the image, e.g., “A woman is throwing a frisbee in a park.

87



5.3 Vision Transformers

• In 2020, Facebook researchers proposed a hybrid CNN–transformer 
architecture for object detection.

• In Oct 2020, Google researchers introduced a fully transformer-based 
vision model, called vision transformer (ViT). Chops the image into 
little 16 × 16 squares and treats the squares as word representations.

• In Mar 2021, DeepMind researchers introduced the Perceiver 
architecture. It is a multimodal transformer, meaning you can feed it 
text, images, audio, or virtually any other modality.

• In 2021, OpenAI announced DALL·E, capable of generating images 
based on text prompts.
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5.4 Hugging Face’s Transformers Library

• Hugging Face is an AI company that has built a whole ecosystem of 
easy-to-use, open-source tools for NLP, vision, and beyond.

• Their Transformers library allows you to easily download a pretrained 
model, including its corresponding tokenizer, and then fine-tune it on 
your own dataset, if needed.

• Supports TensorFlow, PyTorch, and JAX.

• The simplest way to use the Transformers library is to use the 
transformers.pipeline() function. You just specify which task 
you want, such as sentiment analysis, and it downloads a default 
pretrained model, ready to be used.
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Hugging Face Pipeline

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

                # many other tasks are available

# Default: distilbert-base-uncased-finetuned-sst-2-english

classifier("The actors were very convincing".)

# Gives a list containing one dictionary per input text:

[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

# Note the bias:

classifier(["I am from India.", "I am from Iraq."])

[{'label': 'POSITIVE', 'score': 0.9896161556243896},

 {'label': 'NEGATIVE', 'score': 0.9811071157455444}]

90



Hugging Face Pipeline

# To classify two sentences into: 

#   contradiction, neutral, or entailment

model_name = "huggingface/distilbert-base-uncased-

finetuned-mnli"

classifier_mnli = pipeline("text-classification",

                           model=model_name)

classifier_mnli("She loves me. [SEP] She loves me not.")

[{'label': 'contradiction', 'score': 0.9790192246437073}]
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Manual Usage
from transformers import AutoTokenizer,

                         TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = TFAutoModelForSequenceClassification.from_pretrained(

                                                            model_name)

ids = tokenizer(["I like soccer. [SEP] We all love soccer!",

                 "Joe lived for a very long time. [SEP] Joe is old."],

                 padding=True, return_tensors="tf")

outputs = model(ids)

Y_probas = tf.keras.activations.softmax(outputs.logits)

Y_pred = tf.argmax(Y_probas, axis=1)

Y_pred  # 0 = contradiction, 1 = entailment, 2 = neutral

< tf.Tensor: shape = (2,), dtype = int64, numpy = array([2, 1]) >
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Hugging Face’s Important Links

• Available models: https://huggingface.co/models 

• List of tasks: https://huggingface.co/tasks 

• Datasets: https://huggingface.co/datasets

• Documentation: https://huggingface.co/docs
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Summary

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models
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Exercises

11. Use the Hugging Face Transformers library to download a 
pretrained language model capable of generating text (e.g., GPT), 
and try generating more convincing Shakespearean text. You will 
need to use the model’s generate() method—see Hugging Face’s 
documentation for more details.
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