Natural Language Processing
with RNNs and Attention

Prof. Gheith Abandah

Reference 1

* Chapter 16: Natural Language Processing
with RNNs and Attention

OREILLY’ &3

Hands-On
Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

* Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022

e Material: https://github.com/ageron/handson-mi3

https://github.com/ageron/handson-ml3

Reference 2 kd Natural
et Lanquage
. =& Drocessing
% [NACTION
e Chapter 10: Sequence-to-sequence models
and attention

* H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

Outline

Generating Shakespearean Text Using a Character RNN
Sentiment Analysis

An Encoder—Decoder Network for Neural Machine Translation
Attention Mechanisms

Transformer Models

A o

Summary

1. Generating Shakespearean Text Using a
Character RNN

Procedure

1. Creating the training dataset

2. Building and training the char-RNN model
3. Generating fake Shakespearean text

4. Stateful RNN

1.1 Creating the Training Dataset

1. Download and read shakespeare. txt.
2. Split into characters and encode the characters.

3. Convert the long sequence of character IDs into input/target
window pairs.

Download and read shakespeare. txt.

import tensorflow as tf

shakespeare url = "https://homl.info/shakespeare"”
shortcut URL

filepath = tf.keras.utils.get file("shakespeare.txt",
shakespeare url)
with open(filepath) as f£f:
shakespeare text = f.read()

print (shakespeare text[:80])

First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

Split into characters and encode the characters.

text vec layer =
tf.keras.layers.TextVectorization (split="character",
standardize="lower")

text vec layer.adapt ([shakespeare text])
encoded = tex;;veq_layer([shakespeare_ﬁext])[0]

encoded -= 2 # drop tokens 0 (pad) and 1 (unknown),
which we will not use
n_tokens = text vec layer.vocabulary size() - 2
number of distinct chars = 39
dataset size = len (encoded)
total number of chars = 1,115,394

Convert the long sequence of character IDs into

input/ta

rget window pairs.

First Citizen: \nBefore...

Windows

First Citizen: \nBefore...

Targets
I Inputs !
10 I
ir |

First Citizen: \nBefore...

] window()
flat_map()

Jmm. shuffle()

\ batch()
map()

Convert the long sequence of character IDs into
input/target window pairs.

Function to convert a long sequence of character IDs
into a dataset of input/target window pairs

def to .

dataset (sequence, length, shuffle=False,
seed=None, batch size=32):

ds = tf.data.Dataset.from tensor _slices (sequence)
ds = ds.window(length + 1, shift=1,

drop _ remalnder—True)
ds = ds.flat map(lambda window ds:

window ds. batch(length + 1))
1f shuffle:
ds = ds.shuffle (100 000, seed=seed)

ds = ds.batch(batch size)
return ds.map(lambda window: (window[:, :-1],

window[:, 1:])) .prefetch (1)

10

Convert the long sequence of character IDs into
input/target window pairs.

length = 100

tf.random.set seed(42)

train set = to dataset(encoded[:1 000 000],
length=length, shuffle=True,
seed=42)

valid set = to dataset(encoded[l 000 000:1 060 0007,
length=length)

test set = to _dataset(encoded[1l 060 000:7,
length=length)

11

1.2 Building and Training the Char-RNN
Model

model = Sequential ([
Embedding (input dim=n tokens, output dim=16),
GRU (128, return sequences=True),
I Dense (n_tokens, activation="softmax")
model.compile (loss="sparse categorical crossentropy",
optimizer="nadam",
metrlcs—["accuracy 1)
model ckpt = tf.keras.callbacks.ModelCheckpoint (
"my shakespeare model", monitor="val accuracy",
save best only=True)
history = model.fit(train set,
validation data=valid set,
epochs=10,"
callbacks—[model _ckpt])

12

1.3 Generating Fake Shakespearean Text

* RNN output generation is often deterministic, producing the most probable
next token.

* Deterministic outputs may lead to repetitive or predictable sequences.
* Randomness can be introduced to diversify output and improve creativity.

* Temperature parameter controls the level of randomness in output
generation.

* Low temperature
* Produces more confident predictions.
* Higher probability tokens are favored, leading to more deterministic output.

* High temperature
* Increases randomness.
* Allows lower probability tokens to have a higher chance of being selected.

Direct text generation

shakespeare model = tf.keras.Sequential (][
text vec layer,

tfdk?ras “layers.Lambda (lambda X: X - 2), # no PAD or UNK
moaQqe

1)

y _proba = shakesgeare model . predict (
4 = tf! "To e(or nog ;o b"]) [0, -1]
Y pre t argmax roba
P choose t%épmost probable character ID

text vec 1ayer get vocabulary() [y pred + 2]
=

Problem: Predicts the same sequence always

14

Functions to pick the next char and extend a text.

def

def

next char (text, temperature=l):
y_proba = shakespeare model.predict([text]) [0, -1:]
rescaled logits = tf.math.log(y proba) / temperature
char id = tf.random.categorical (rescaled logits,

num samples=1l) [0, O]
return text vec layer.get vocabulary() [char id + 2]

extend text(text, n chars=50, temperature=l):
for in range(n_chars):

text += next char(text, temperature)
return text

15

Experimenting with temperature

print (extend text("To be or not to be", temperature=0.01))

To be or not to be the duke
as it i1s a proper strange death,
and the

print (extend text("To be or not to be", temperature=l))

To be or not to behold?
second push:
gremio, lord all, a sistermen,

print (extend text("To be or not to be", temperature=100))

To be or not to bef ,mt'&o3fpadm!S$
wh!nse?bws3est--vgerdjw?c-y-ewznqg

16

1.4 Stateful RNN

 Stateless RNNs: at each training iteration the model starts with a
hidden state full of zeros.

 Stateful RNN: preserve this final state after processing a training
batch and use it as the initial state for the next training batch.

* The model learns long-term patterns despite only backpropagating
through short sequences.

model = tf.keras.Sequential ([
tf.keras.layers.Embedding (input dim=n tokens,
output dim=T6,
batch Input shape=[1l, None]),
tf.keras.layers.GRU (128, return sequences=True,
stateful=True),
tf.keras.layers.Dense(n tokens, activation="softmax")

1)

17

Preparing a dataset of consecutive sequence
fragments for a stateful RNN

First Citizen: \nBefore...
Jmy window()

flat_map()
Window] !
I l
First Citizen: \nBefore...
J\ batch()
Gadi R LY
. Inputs '
Batch# e 1
1Y

Preparing a dataset of consecutive sequence
fragments for a stateful RNN

def to dataset for stateful rnn(sequence, length):

ds = tf.data.Dataset. from tensor slices (sequence)
ds = ds.window(length + 1, shift=length,

drop remainder=True)
ds = ds.flat map(lambda window: window.batch (length

+ 1)) .batch (1)
return ds.map(lambda window: (window[:, :-1],
window[:, 1:])) .prefetch (1)

19

Training the stateful RNN

At the end of each epoch, we need to reset the states before
we go back to the beginning of the text.

class ResetStatesCallback (tf.keras.callbacks.Callback):
def on epoch begin(self, epoch, logs):
self.model.reset states()

model.compile (loss="sparse categorical crossentropy",
optimizer="nadam", metrics=["accuracy"])

history = model.fit(stateful train set,
valldatlon data=stateful _valid set,
epochs=10, callbacks—[ResetStatesCallback(),
model ckpt])

Outline

Sentiment Analysis

An Encoder—Decoder Network for Neural Machine Translation
Attention Mechanisms

Transformer Models

o Uk W

Summary

2. Sentiment Analysis

 IMDb movie reviews

Procedure

1. Creating the training dataset

= W N

Building and training the RNN model
Masking
Reusing pretrained embeddings and language models

2.1 Creating the training dataset

import tensorflow datasets as tfds

The IMDb dataset has 50,000 movie reviews in English

25,000 for training, 25,000 for testing

raw _train set, raw valid set, raw test set = tfds.load(
name="imdb reviews",
split=["train[:90%]", "train[90%:]", "test"],
as_supervised=True

)

train set = raw train set.shuffle (5000,
seed=42) .batch (32) .prefetch (1)

valid set = raw valid set.batch(32) .prefetch(1)

test set = raw test set.batch(32) .prefetch(l)

23

2.1 Creating the training dataset

Simple tokenization using spaces for token boundaries
Limit the vocabulary to 1,000 tokens

Very rare words are not important for this task
vocab size = 1000

text vec layer =
tf.keras.layers.TextVectorization(max tokens=vocab size)

text vec layer.adapt(train set.map(lambda reviews,
labels: reviews))

24

2.2 Building and training the RNN model

embed size = 128

model = tf.keras.Sequential ([
text vec layer,
tf.keras.layers.Embedding(vocab size, embed size),
tf.keras.layers.GRU(128),

tf.keras.layers.Dense(l, activation="sigmoid")
1)

model.compile (loss="binary crossentropy",
optimizer="nadam", metrics=["accuracy"])

history = model.fit(train_ set,
validation data=valid set, epochs=2)

25

2.3 Masking

* The accuracy of the previous model is only about 50%.

* When TextVectorization converts reviews to sequences of token
IDs, it pads the shorter sequences using the padding token (with ID
0).

* When the GRU layer goes through many padding tokens, it ends up
forgetting what the review was about!

* Masking makes the model ignore the padding tokens.

2.3 Masking

Validation accuracy = 87% after 5 epochs
embed size = 128

model = tf.keras.Sequential ([
text vec layer,
tf.keras.layers.Embedding (vocab size, embed size,
mask zero=True),
tf.keras.layers.GRU (128, dropout=0.2),
tf.keras.layers.Dense(l, activation="sigmoid")

1)

27

2.4 Reusing pretrained embeddings and
language models

* Can use Google’s Universal Sentence Encoder

* Task: Encodes text into high-dimensional vectors for various NLP tasks
like classification, similarity, clustering.

* Input: Variable length English text (sentences, phrases, short
paragraphs).

* OQutput: 512-dimensional vector capturing text meaning.

* Training: Optimized for sentences, trained on diverse data sources and
tasks for broad NLP applicability.

* Advantage: Models meaning of entire sequences, not just individual
words (compared to word embedding models).

* Available on TensorFlow Hub Library (https://tensorflow.org/hub).

28

https://tensorflow.org/hub

2.4 Reusing pretrained embeddings and
language models

Validation accuracy = 90% after 10 epochs
import os
import tensorflow hub as hub

os.environ["TFHUB CACHE DIR"] = "my tfhub cache"

url = "https://tfhub.dev/google/universal-sentence-

encoder/4"

model = tf.keras.Sequential ([
hub.KerasLayer (url, trainable=True, dtype=tf.string,

input shape=[]),

tf.keras.layers.Dense (64, activation="relu"),
tf.keras.layers.Dense(l, activation="sigmoid")

1)

29

Outline

An Encoder—Decoder Network for Neural Machine Translation
Attention Mechanisms
Transformer Models

o U kW

Summary

3. An Encoder—Decoder Network for Neural
Machine Translation

* Encoder: Analyzes source sentence (e.g., English). Uses RNNs (like
LSTMs) to capture word relationships and context. Summarizes the
sentence into a “context vector.”

* Decoder: Generates target sentence (e.g., Spanish). Uses the context
vector and predicts words one-by-one, considering previous
predictions.

* Benefits

* High Accuracy: Captures complex sentence structures and context better than
traditional methods.

* Flexible: Handles variable-length sentences and translates across different
languages effectively.

Target: Me gusta el futbol <eos>

Prediction: Me encanta | fuitbol <eos>

Fncoder-Decoder Dense + softmax activation

X0) Xa)

- e E e e o s e e s s e e e e o
T O E W W W W O W W O W W W W W w a

"l like soccer” "<s0s> Me gusta el futbol”

32

3. An Encoder—Decoder Network for Neural
Machine Translation

* English to Spanish translation

Procedure

1. Creating the training dataset
Building and training the model
Translating English to Spanish
Bidirectional RNNs

Beam Search

A

3.1 Creating the training dataset

url =
"https://storage.googleapis.com/download. tensorflow.org/

data/spa-eng.zip"
path = tf.keras.utils.get file("spa-eng.zip",
origin=url,
cache dir="datasets",
extract=True)
text = (Path(path) .with name ("spa-eng") /
"spa.txt") .read text()

34

3.1 Creating the training dataset

TextVectorization layer doesn’t handle "“;” and “;”
Parse the sentence pairs, shuffle,
and split into two separate lists

text = text.replace(";", "").replace("s;", "")

pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle (pairs)

sentences en, sentences es = zip(*pairs)

for i in range(3):
print (sentences en[i], "=>", sentences es[i])

How boring! => Qué aburrimiento!

I love sports. => Adoro el deporte.

Would you like to swap jobs? => Te gustaria que
intercambiemos los traba‘jos?

35

3.1 Creating the training dataset

vocab size = 1000
max length = 50
text vec _layer _en = tf.keras.layers.TextVectorization (
vocab size, output sequence length=max length)
text vec laye:_es = tf.keras.layers.TextVectorization (
vocab size, output sequence length=max length)
text vec Iayer en.adapt(sentences_en)
text vec layer es.adapt([f"startofseq {s} endofseq" for s in
sentences es])

text vec layer en. get vocabulary()[10]
['', '[UNK]', "the', "i', 'to' 'you' 'tom', 'a', 'is', 'he']

text vec layer es.get vocabulary()[10]

['', '[UNK]' Tstartofseq', 'endofseq', 'de', 'que', 'a', 'no',
'tom 'la']

36

3.1 Creating the training dataset

Split the sequences to train and validation sets
X train = tf.constant(sentences en[:100 000])
X valid = tf.constant (sentences en[100 000:])
X train dec = tf.constant([f"startofseq {s}" for s in
sentences es[:100 000]1])
X valid dec = tf.constant([f"startofseq {s}" for s in
sentences es[100 000:]1])
Y train = text vec layer es([f"{s} endofseq" for s in
sentences es[:100 000]1])
Y valid = text vec layer es([f"{s} endofseq" for s in
sentences es[100 000:]1])

37

3.2 Building and training the model

encoder inputs = tf.keras.layers.Input (shape=[],
dtype=tf.string)
embed size = 128
encoder input ids = text vec layer en(encoder inputs)
encoder embedding layer = tf.keras.layers.Embedding(
vocab size, embed size, mask zero=True)
encoder embeddings = encoder embedding layer (
encoder input ids)
encoder = tf.keras.layers.LSTM(512, return state=True)
encoder outputs, *encoder state = encoder
encoder embeddings)

3.2 Building and training the model

decoder inputs = tf.keras.layers.Input (shape=[],
dtype=tf.string)
decoder input ids = text vec layer es(decoder inputs)
decoder embedding layer = tf.keras.layers.Embedding (
vocab size, embed size, mask zero=True)
decoder embeddings = decoder embedding layer (
decoder input ids)
decoder = tf.keras.layers.LSTM(512,
return sequences=True)
decoder outputs = decoder (decoder embeddings,
initial state=encoder state)
output layer = tf.keras.layers.Dense(vocab size,
activation="softmax")
Y proba = output layer (decoder outputs)

3.2 Building and training the model

model = tf.keras.Model (inputs=[encoder inputs,
decoder inputs],
outputs=[Y proba])
model.compile (loss="sparse categorical crossentropy",
optimizer="nadam", metrics=["accuracy"])

model.fit((X train, X train dec), Y train, epochs=10,
validation data—((x va11d X valid dec),
Y valid))

accuracy: 0.8402, val accuracy: 0.6763

40

3.3 Translating English to Spanish

* At inference time, the decoder is fed as input the word it just output
at the previous time step.

SRS S S

Ya) Yo Yo Y

<S0s>

3.3 Translating English to Spanish

def translate(sentence en):
t — mww
for word idx in range (max length):
X = np.array([sentence en])
X dec = np.array(["startofseq " + t])
y _proba = model.predict((X, X dec)) [0, word idx]

predicted word id = np.argmax(y proba)
predicted word = text vec layer es.get vocabulary()
[predicted word id]
if predicted word == "endofseq":
break
t += " " + predicted word
return t.strip()

3.3 Translating English to Spanish

It works with very short sentences.
translate ("I like soccer")
'me gusta el futbol'

It struggles with longer sentences.
translate ("I like soccer and also going to the beach")
'me gusta el fuatbol y a veces mismo al bus'

43

3.4 Bidirectional RNNs

* It is often useful to look ahead at
the next words before encoding
a given word, e.g., “the right

arm”, “the right person”, and
“the right to criticize.”

e Use two recurrent layers on the
same inputs, one reading the
words from left to right and the
other reading them from right to
left, then combine their outputs
at each time step.

Y o)

X0)

Yoy

Yo)

Concatenate

X(2)

44

3.4 Bidirectional RNNs

tf.random.set seed(42) # extra code — ensures

reproducibility on CPU

encoder = tf.keras.layers.Bidirectional (
tf.keras.layers.LSTM(256, return state=True))

(;
Reduced from 512

concatenate the two short-term states

and the two long-term states
encoder outputs, *encoder state = encoder (
encoder embeddings)
encoder state = [tf.concat(encoder state[::2], axis=-1),
short-term (0 & 2)
tf.concat (encoder state[l::2], axis=-1)]
long-term (1 & 3)

accuracy: 0.8577, val _accuracy: 0.6906

45

3.5 Beam Search

* Greedy search in NMT picks the most likely word at each step,
potentially leading to locally optimal but bad translations.

* Beam Search: Explores multiple translation options simultaneously.
Keeps a fixed number of (“beam width”) most probable partial
translations at each step.

* Benefits

* Improved Fluency: Considers diverse contexts, reducing the risk of getting
stuck in poor translations.

* More Accurate: Increases the chance of finding the overall best translation
compared to greedy search.

46

3.5 Beam search of width 3 to translate
“l like soccer” to “me gusta el futbol”

como
75% 3% 1%
Me gustan Me gusta Meencanta e e ami .
75%x?(< 75%X32i/024%\m%w
Me gustanlos « « « Me gustael Me gustamucho « « «
27%%37%=10% 24%%33%=8% 24%%9%=2%

/\ /\\ -

** Megusta elfatbol Megustaeldeporte e+« Megustamuchoel o«
8%%75%=6% 8%%12%=1% 2%%10%=0.2%

Outline

4. Attention Mechanisms
5. Transformer Models
6. Summary

4. Attention Mechanisms

* Introduction

* Additive Attention (Bahdanau)

* Multiplicative Attention — Dot (Luong)

* Multiplicative Attention - General (Luong)

* Attention Summary

* Keras Implementation of Dot Product Attention
* Attention Acts as Memory Retrieval Mechanism

4.1 Attention Mechanisms — Introduction

Target: Me gusta el fitbol <@os>

* The traditional encoder-decoder
model has a limitation: it
encodes the entire input rcoder-Decoder S —r—
sequence into a single fixed- S EPELEEREe St R RSN SRR S N
length vector, which can be T Y U :

challenging for long sequences. Y HT]—P{ g e e TV]§
* Attention mechanismsaddress T | T & E
this limitation by allowing the o o e
decoder to focus on specific |)
parts of the input sequence
when generating the output.

Prediction: Me encanta | ftbol <e0s>

“I like soccer” "<s0s> Me gusta el futbol”

50

4.2 Additive Attention (Bahdanau)

e Send all the encoder’s outputs to

the decoder.

* The decoder computes a weighted
sum of all the encoder outputs.

* The weight o, , is the weight of
the it" encoder output at the tth

decoder time step.

* For example, if a5 ,, is larger than
(30 @and a3 ;), then the decoder

pays more attention to the

encoder’s output for Word 2.

s S
SERCEE / a(’a}\ ; /

fmee SRS A Y €Bo) BN G2

EEncoder

>—>Q—>- > xGEo) %@ “(3.2)5

Softmax

hez) T‘[

T

1t

Y0)

Xo) Xm *@ . Alignmentmodel

Yo Yo

51

4.2 Additive Attention (Bahdanau)

* The alignment model (attention . “fit
layer) is trained with the rest of the Vo Yo Ta
model. § R A
* The dense layer outputs a score (or §"""=-4-5|1"Q‘"-4-5"’§ 6o ey 62!
energy) for each encoder output. 2 Lo Nt /7
:Decoder XHG'O)[BWGQ) E : [Zoftmax
* The softmax layer makes the 4 T;“ e 7 ,
weights for a given stepaddupto ;g G o GO G G2
- 1.1 | 5
* This is concatenative (or additive) lﬁmﬁmﬁ] SRT Y N N
attention as it concatenates the N N N R Yo Yo Yo !
encoder output with the decoder’s imwury 4 4 | orremseeaseeeoees ’
previous hiddenstate. | I

52

4.3 Multiplicative Attention - Dot (Luong)

* Measures the similarity between e
one of the encoder’s outputs and hy
the decoder’s hidden state using I
the dot product. _Attention Layer -

* Uses the decoder’s current hidden | Context vector

state (h rather than h,_;)).

e Uses the output of the attention
mechanism h directly to
compute the decoder’s predictions.

Global align weights

53

4.4 Multiplicative Attention - General
(Luong)

* The encoder outputs first go -
through a fully connected layer hy
(without a bias term) before the I
dot products are computed. _Attention Layer -

e Luong et al. (2015) compared both | Context vector

dot product approaches with
concatenative attention (adding a
rescaling parameter vector v).

Global align weights

* The dot product variants
performed better than
concatenative attention.

54

4.5 Attention Summary

* The energy e, ; is computed in
one of the three mechanisms: -

dot

general

Dot product by = Zj:”f’(f, i)Y ()
e General dot- product o eXp((?(f, 3))
* Concatenative with o ;) = S exp(cq 1)
* Softmax is used to get the g e
attention a; ;. hiy "y
. Attentio’n is used to find the and ¢(;, 1) = thy "Wy
decoder’s output as the
weighted sum of the encoder’s vTtanh(W|hy;y(;)|) concat

output.

55

4.6 Keras Implementation of Dot Product
Attention

need to pass all encoder’s outputs to the Attention layer

encoder = tf.keras.layers.Bidirectional (
tf.keras.layers.LSTM(256, return sequences=True,
return state=True))

attention layer = tf.keras.layers.Attention()
attention outputs = attention layer ([decoder outputs,
encoder outputs])
output layer = tf.keras.layers.Dense(vocab_size,_
activation="softmax")

Y proba = output_ layer (attention_ outputs)

56

4.7 Attention Acts as Memory Retrieval

Mechanism

* The Keras Attention expects a list
as input, containing two or three
items: the queries, the keys, and
optionally the values.

* If you do not pass an?/ values, then
;c(hey are automatically equal to the
eys.

* The decoder outputs are the queries,
and the encoder outputs are both the
keys and the values. For each decoder
output (query), the attention layer
returns a weighted sum of the
encoder outputs (keys/values) that
are most similar to the decoder
output.

Query

Attention:

weighted mean

—> Similarity

I:':>

Keys Y

N

Map weight to
info (values)

Values T

Gained Previous Memory

\.

Stored
Information

c———> Relevantinfo

Outline

5. Transformer Models
6. Summary

5. Transformer Models

e Attention Is All You Need

* An Avalanche of Transformer Models
* Vision Transformers

* Hugging Face’s Transformers Library

5.1 Attention Is All You Need

* Vaswani et al. (2017) created an architecture called the transformer,
which significantly improved the state-of-the-art in NMT without
using any recurrent or convolutional layers, just attention
mechanisms.

v'Doesn’t suffer from the vanishing or exploding gradients problems as
RNNs

VIt can be trained in fewer steps.
v'It’s easier to parallelize across multiple GPUs.
VIt can better capture long-range patterns.

5.1 Attention Is All You Need

* The left part is the encoder, and the
right part is the decoder.

* Each embedding layer outputs a 3D
tensor of shape [batch size, sequence
length, embedding size].

* The encoder and the decoder contain
modules that are stacked N times. In
the paper, N = 6.

* The final encoder outputs are fed to
the decoder modules.

Output

Probabilities
)
| Softmax |
| Linear)
A
(N
| Add & Norm =~
Feed
Forward
|
e ~\ LAdd & Norm e~
—>(_Add & Norm J Mult-Head
Feed Attention
Forward T 77 N x
{ L |
Add & Norm
Nx r
~>| Add & Norm J v
Multi-Head Multi-Head
Attention Attention
A+ 2 A+ 2
\ J U —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

61

5.1 Attention Is All You Need

* The encoder’s role is to gradually
transform the inputs until each word’s
representation captures the meaning of
the word, in the context of the sentence.

* The decoder’s role is to gradually
transform each word representation in
the translated sentence into a word
representation of the next word in the
translation.

e After going through the decoder, each
word representation goes through a final
Dense layer with a softmax activation
function.

Nx | {"Add & Norm)

4)
~>| Add & Norm |

Feed
Forward

Output
Probabilities

|

| Softmax |

| Linear |

)

(N
| Add & Norm <=~

Feed
Forward

| Add & Norm Je=~

Multi-Head
Attention

S

_

A

Multi-Head
Attention

At 2

—

| Add & Norm Je=

Masked
Multi-Head
Attention

At 2

N x

\

 CE—

J

Positional
Encoding

D

Input
Embedding

I

Inputs

.

—J)

E_

Positional
Encoding

Output
Embedding

T

Outputs

(shifted right)

62

Encoder Modules

e Skip connections

* The multi-head attention layer
updates each word representation by
attending to (i.e., paying attention to)
all other words in the same sentence.

* Normalization layers

* Feedforward modules with two
dense layers each (the first with RelLU
activation, the second with no
activation)

N x

~
Add &I Norm |
Feed

Add & Norm

Multi-Head
Attention

63

Decoder Modules

 Skip connections

* The masked multi-head attention layer
doesn’t attend to words located after it:
it’s a causal layer.

* Multi-head attention layers
 Normalization layers
* The upper multi-head attention layer

does cross-attention, not self-attention.

* Feedforward modules with two dense
layers each (the first with RelLU
activation, the second with no
activation)

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

}
Add & Norm

Masked
Multi-Head
Attention

N x

64

Positional Encoding

* Dense 3D vectors that represent the position

of each word in the sentence. The nt" Positional
positional encoding is added to the word Encoding
embedding of the nt" word in each sentence. [Bt]
e Same shape as the output of the embedding EBeging
layer. T
* The authors of the transformer paper used Inputs
fixed positional encodings, based on the sine
and cosine functions at different frequencies 'sin(p/l()OOO’-"[d) ifiis even
* Each word in the sentence has a unique Py = G-\ or -
positional encoding. ~cos(p/lOOOO |) if 721is odd

* The oscillating functions allows the model to
learn relative positions.

65

Transformers Video

 YouTube Video: But what is a GPT? Visual intro to transformers from
3BluelBrown

https://youtu.be/wjZofJXOv4M

66

https://youtu.be/wjZofJX0v4M

Multi-head Attention

* Based on the scaled dot-product
attention layer; queries Q, keys K,
and values V.

* Found efficiently using matrix
multiplications.

* The multi-head attention layer uses H

splits of the values, keys, and queries:

this allows the model to apply
multiple projections of the word
representation into different
subspaces, each focusing on a subset
of the word’s characteristics.

|

Linear

|
Concat
AA
A
Scaled Dot-Product
Attention
Split Split Split
1)
Linear Linear Linear
V K Q

Attention (Q,K, V) = softmax

67

Attention Video

* YouTube Video: Attention in transformers, visually explained from
3BluelBrown

https://youtu.be/eMIx5fFNoYc

68

https://youtu.be/eMlx5fFNoYc

5.2 An Avalanche of Transformer Models

* Introduction

* Generative Pre-trained Transformers (GPT)

* Bidirectional Encoder Representations from Transformers (BERT)
* Text-to-Text Transfer Transformer (T5)

* Large Language Model Meta Al (LLaMA)

Introduction

* In 2016, Google Translate gradually replaced the older statistical
machine translation approach with the newer neural-networks-based
approach that included a seq2seq model combined by LSTM and the
“additive” kind of attention mechanism.

* In 2017, the original (100M-sized) encoder-decoder transformer
model with a faster (parallelizable or decomposable) attention
mechanism was proposed in the "Attention is all you need" paper.
The intent of the transformer model is to take a seq2seq model and
remove its recurrent neural networks, but preserve its additive
attention mechanism.

70

https://en.wikipedia.org/wiki/Google_Translate
https://en.wikipedia.org/wiki/Statistical_machine_translation
https://en.wikipedia.org/wiki/Statistical_machine_translation
https://en.wikipedia.org/wiki/Google_Neural_Machine_Translation
https://en.wikipedia.org/wiki/Attention_is_all_you_need

Introduction

* In 2018, an encoder-only transformer was used in the (more than 1B-
sized) BERT model.

* In 2020, vision transformer and speech-processing convolution-
augmented transformer outperformed recurrent neural networks,

previously used for vision and speech.

* In 2020, difficulties with converging the original transformer were
solved by normalizing layers before (instead of after) multiheaded
attention by Xiong et al. This is called pre-LN Transformer.

* In 2023, unidirectional ("autoregressive") transformers were being
used in the (more than 100B-sized) GPT-3 and
other OpenAl GPT models.

71

https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/Vision_transformer
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer

Generative Pre-trained Transformers (GPT)

* In 2018, OpenAl GPT, “Improving Language
Understandmg by Generative Pre- -Training.”

* Used self-supervised pretraining (predict the
next token)

* A transformer of a stack of 12 modules (117 M)

* Then they fine-tuned it on various language
tasks, using only minor adaptations for each task.
» Text classification

* Entailment (whether sentence A imposes, involves, or
implies sentence B as a necessary consequence)

. Slmllarlty (e.g., “Nice weather today” is very similar to
“It is sunny”)

* Question answering (given a few paragraphs of text
giving some context, the model must answer some
multiple-choice questlons

Transformer Block Output

[Matmul][Matmul][Matmul]

[Dropout] [Dropout] [Dropout]

[Softmax] [Softmax] [Softmax]

4 [} [}
[Mask] [Mask] [Mask]
4 [} [}

[Matmul] [Matmul] [Matmul]
Hta*l : + H+ead+H

Transformer Block Input

72

Generative Pre-trained Transformers (GPT)

* In February 2019, GPT-2 with over 1.5B parameters.

e Zero-shot learning (ZSL), achieves good performance on many tasks
without any fine-tuning.

* In May 2020, GPT-3, 175B parameters, 96 attention layers, each layer
contains 96 attention heads.

Model

) Parameter
Architecture B Training data Release date Training cost

BookCorpus:24 4,5 GB of
text, from 7000
unpublished books of
various genres.

WebText: 40 GB of text, 8

30 days on 8
Jun 11, 2018 P600 GPUs, or 1
peta FLOP/s-day

12-level, 12-headed Transformer
decoder (no encoder), followed 117 M
by linear-softmax.

GPT-1, but with modified 15 M million documents, from Feb 14, Tens of petaflop/s-
normalization ' 45 million webpages 2019 (initial) day
upvoted on Reddit.
499 billion tokens
consisting
GPT-2, but with modifi-cation to 175 B of CommonCrawl| (5_70 GB), May 28, 2020 3640 petaflop/s-
allow larger scaling WebText, English day
Wikipedia, and two book
corpora
Undisclosed 175 B Undisclosed Mar 15, 2022 Undisclosed
Alsgrzg;:teignwa:g:j bR?_t:Ft_eXt Undisclosed Undisclosed.
— . Estimated Undisclosed Mar 14, 2023 Estimated 2.1e25
accepts both text and images as 17T FLOP

input

https://en.wikipedia.org/wiki/GPT-1
https://en.wikipedia.org/wiki/BookCorpus
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer#cite_note-34
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/GPT-3
https://en.wikipedia.org/wiki/Common_Crawl
https://en.wikipedia.org/wiki/GPT-3.5
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/wiki/Reinforcement_learning_from_human_feedback
https://en.wikipedia.org/wiki/Multimodal_learning

Bidirectional Encoder Representations from
Transformers (BERT)

* In 2018, Google BERT, “BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.”

* BERT,,¢: 12 encoders with 12 bidirectional self-attention heads
totaling 110M parameters

* BERT 5rer: 24 encoders with 16 bidirectional self-attention heads
totaling 340M parameters.

* Pre-trained on the Toronto BookCorpus (800M words) and English
Wikipedia (2,500M words).

Bidirectional Encoder Representations from
Transformers (BERT)

e Used self-supervised pretraining (masked language model and next
sentence prediction)

ﬁsp Mask LM Ma% LM \ MNLI MAD Start/End Spem
T =

. e s
3 ER N N ™ EA N L)) e -
IR »
BERT . | e——h = = P BERT
Ecws E | .. En Eiser) = e v Ec = |l = E sepy Ealne. Es
-! EEER -E EREIEENET

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning 76

Bidirectional Encoder Representations from
Transformers (BERT)

* The DistilBERT model is a small and fast transformer model based on
BERT.

* Trained using distillation: Transferring knowledge from a teacher

model to a student one, which is usually much smaller than the
teacher model.

* This is typically done by using the teacher’s predicted probabilities
for each training instance as targets for the student.

* Distillation often works better than training the student from scratch
on the same dataset as the teacher!

Text-to-Text Transfer Transformer (T5)

* In 2019, Google T5, “Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer.”

* Frames all NLP tasks as text-to-text, using an encoder—decoder
transformer.

* “Translate English to Spanish: | like soccer”
* “Summarize:” followed by the paragraph
e “Classify:” followed by the sequence

* Sizes

T5-Small: 60 M, 8 layers, 6 heads
T5-Base: 220 M, 12 layers, 12 heads
T5-Large: 770 M, 24 layers, 156 heads
T5-3B: 3 B, 24 layers, 32 heads
T5-11B: 11 B, 24 layers, 96 heads

78

Text-to-Text Transfer Transformer (T5)

* In 2022, Google ByT5, “ByT5: Towards a Token-Free Future with Pre-trained
Byte-to-Byte Models.”

* A variant of the original T5 model, specifically designed to handle raw bytes
of text, no need for subword tokenization methods like SentencePiece.

* Tokenization Approach: ByT5 processes text at the byte level, UTF-8
sequences. This allows it to handle an extremely wide range of human

languages and other data types (like emojis and special characters)
seamlessly.

* ByT5 is trained on a similar mix of tasks as T5, unsupervised and supervised
tasks, derived from a dataset called “Colossal Clean Crawled Corpus” (C4).

Pathways Language Model (PaLM)

* In 2022, Google PaLM, “PaLM: Scaling Language Modeling with
Pathways.”

* Has 540 billion parameters, using over 6,000 TPUs.
* Is a standard transformer, using decoders only.

* This model achieved incredible performance on all sorts of NLP tasks,
particularly in natural language understanding (NLU).

* It’s capable of impressive feats, such as explaining jokes, giving
detailed step-by-step answers to questions, and even coding.

* This is in part due to the model’s size, but also thanks to a technique
called Chain of thought prompting.

Large Language Model Meta Al (LLaMA)

* LLaMA is a family of large language models (LLMs) by Meta Al.
* Open Source

* LLaMA 1 released in February 2023.

* LLaMA 2 was release on July 18, 2023.

* LLaMA 3 is expected in May 2024.

* LLaMA uses the transformer architecture, the standard architecture
for language modeling since 2018, with some changes.

Model Sizes and Training

Training Data Params Context GQA Tokens LR
Length

7B 2k 1.0T 3.0 x 1074

L1 AMA 1 See Touvron et al. 13B 2k 1.0T 3.0 x 1074
(2023) 33B 2k 14T 1.5 x 1074

65B 2k 1.4T 1.5 x 1074

7B 4k 20T 3.0 x 1074

[A new mix of publicly 13B 4k 2.0T 3.0 x 1074

LAMA 2) . o

available online data 34B Ak v 2.0T 1.5 x 1074

70B 4k v 2.0T 1.5 x 1074

Table 1: Lrama 2 family of models. Token counts refer to pretraining data only. All models are trained with
a global batch-size of 4M tokens. Bigger models — 34B and 70B — use Grouped-Query Attention (GQA) for
improved inference scalability.

82

Training LLaMA 2 Chat - Helpfulness and
Safety

HUMAN
FEEDBACK
FINE-TUNING

-]
Ao S
S
O Safety Reward Model
Rejection Proximal Policy
Sampling Optimization
v
==
RLHF
Human preference data Helpful Reward Model

PRETRAINING

Self-supervised

e Q% Llama-2-chat

Pretraining data

learning

Training Time and Cost

Time Power Carbon Emitted
(GPU hours) Consumption (W) (tCO2eq)
/B 184320 400 31.22
T 1 ama o 10D 368640 400 62.44
34B 1038336 350 153.90
70B 1720320 400 291.42
Total 3311616 539.00

Cost Estimate S5M

84

Performance — Open-source LLMs

. Commonsense World Reading
Model Size Code Reasoning Knowledge Comprehension Math MMLU BBH AGI Eval
MPT 7B 20.5 57.4 41.0 57.5 4.9 268 310 23.5
30B 289 64.9 50.0 64.7 91 469 38.0 33.8
Falcon 7B 5.6 56.1 42.8 36.0 4.6 262 28.0 21.2
40B 15.2 69.2 56.7 65.7 126 554 371 37.0
7B 14.1 60.8 46.2 58.5 695 351 303 25.9
Liama 1 BB 189 66.1 52.6 62.3 109 469 37.0 33.9
33B 26.0 70.0 58.4 67.6 214 578 398 41.7
65B 30.7 70.7 60.5 68.6 308 634 435 47.6
7B 16.8 63.9 48.9 61.3 146 453 326 29.3
Liama o 13B 245 66.9 55.4 65.8 28.7 548 394 39.1
34B 27.8 69.9 58.7 68.0 242 626 441 43.4
70B 37.5 71.9 63.6 69.4 35.2 68.9 51.2 54.2

Table 3: Overall performance on grouped academic benchmarks compared to open-source base models.

85

Performance — Closed-source LLMs

Benchmark (shots) GPT-3.5 GPT4 PalLM PalLM-2-L. Liama2
MMLU (5-shot) 70.0 86.4 69.3 78.3 68.9
TriviaQA (1-shot) - — 81.4 86.1 85.0
Natural Questions (1-shot) — — 29.3 37.5 33.0
GSMSK (8-shot) 57.1 92.0 56.5 80.7 56.8
HumankEval (0-shot) 48.1 67.0 26.2 - 289
BIG-Bench Hard (3-shot) - - 52.3 65.7 51.2

Table 4: Comparison to closed-source models on academic benchmarks. Results for GPT-3.5 and GPT-4
are from OpenAl (2023). Results for the PALM model are from Chowdhery et al. (2022). Results for the
PaLM-2-L are from Anil et al. (2023).

5.3 Vision Transformers

e |n 2015, Visual Attention used a convolutional neural network and a
decoder RNN with attention mechanism to generate captions.

* The decoder uses the attention model to focus on just the right part
of the image, e.g., “A woman is throwing a frisbee in a park.

87

5.3 Vision Transformers

* In 2020, Facebook researchers proposed a hybrid CNN—transformer
architecture for object detection.

* In Oct 2020, Google researchers introduced a fully transformer-based
vision model, called vision transformer (ViT). Chops the image into
little 16 x 16 squares and treats the squares as word representations.

* In Mar 2021, DeepMind researchers introduced the Perceiver
architecture. It is a multimodal transformer, meaning you can feed it
text, images, audio, or virtually any other modality.

* In 2021, OpenAl announced DALL-E, capable of generating images
based on text prompts.

88

5.4 Hugging Face’s Transformers Library

* Hugging Face is an Al company that has built a whole ecosystem of
easy-to-use, open-source tools for NLP, vision, and beyond.

* Their Transformers library allows you to easily download a pretrained
model, including its corresponding tokenizer, and then fine-tune it on
your own dataset, if needed.

* Supports TensorFlow, PyTorch, and JAX.

* The simplest way to use the Transformers library is to use the
transformers.pipeline () function. You just specify which task
you want, such as sentiment analysis, and it downloads a default
pretrained model, ready to be used.

Hugging Face Pipeline

from transformers import pipeline
classifier = pipeline("sentiment-analysis")
many other tasks are available

Default: distilbert-base-uncased-finetuned-sst-2-english

classifier ("The actors were very convincing".)
Gives a list containing one dictionary per input text:
[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

Note the bias:

classifier(["I am from India.", "I am from Iraq."])
[{'1label': 'POSITIVE', 'score': 0.9896161556243896},
{'label': 'NEGATIVE', 'score': 0.9811071157455444}]

90

Hugging Face Pipeline

To classify two sentences into:
contradiction, neutral, or entailment

model name = "huggingface/distilbert-base-uncased-
finetuned-mnli"

classifier mnli = pipeline("text-classification",
model=model name)

classifier mnli("She loves me. [SEP] She loves me not.")

[{'label': 'contradiction', 'score': 0.9790192246437073}]

91

Manual Usage

from transformers import AutoTokenizer,
TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from pretrained(model name)

model = TFAutoModelForSequenceClassification.from pretrained (
model name)

tokenizer (["I like soccer. [SEP] We all love soccer!",
"Joe lived for a very long time. [SEP] Joe is old."],

padding=True, return tensors="tf")

ids

outputs = model (ids)

Y probas = tf.keras.activations.softmax (outputs.logits)

Y pred = tf.argmax (Y probas, axis=l)

Y pred # 0 = contradiction, 1 = entailment, 2 = neutral

< tf.Tensor: shape = (2,), dtype = int64, numpy = array([2, 1]) >

92

Hugging Face’s Important Links

 Available models: https://huggingface.co/models

e List of tasks: https://huggingface.co/tasks
» Datasets: https://huggingface.co/datasets
* Documentation: https://huggingface.co/docs

93

https://huggingface.co/models
https://huggingface.co/tasks
https://huggingface.co/datasets
https://huggingface.co/docs

Summary

Generating Shakespearean Text Using a Character RNN

Sentiment Analysis
An Encoder—Decoder Network for Neural Machine Translation

Attention Mechanisms

Al S

Transformer Models

Exercises

11. Use the Hugging Face Transformers library to download a
pretrained language model capable of generating text (e.g., GPT),
and try generating more convincing Shakespearean text. You will
need to use the model’s generate () method—see Hugging Face’s
documentation for more details.

	Slide 1: Natural Language Processing with RNNs and Attention
	Slide 2: Reference 1
	Slide 3: Reference 2
	Slide 4: Outline
	Slide 5: 1. Generating Shakespearean Text Using a Character RNN
	Slide 6: 1.1 Creating the Training Dataset
	Slide 7: Download and read shakespeare.txt.
	Slide 8: Split into characters and encode the characters.
	Slide 9: Convert the long sequence of character IDs into input/target window pairs.
	Slide 10: Convert the long sequence of character IDs into input/target window pairs.
	Slide 11: Convert the long sequence of character IDs into input/target window pairs.
	Slide 12: 1.2 Building and Training the Char-RNN Model
	Slide 13: 1.3 Generating Fake Shakespearean Text
	Slide 14: Direct text generation
	Slide 15: Functions to pick the next char and extend a text.
	Slide 16: Experimenting with temperature
	Slide 17: 1.4 Stateful RNN
	Slide 18: Preparing a dataset of consecutive sequence fragments for a stateful RNN
	Slide 19: Preparing a dataset of consecutive sequence fragments for a stateful RNN
	Slide 20: Training the stateful RNN
	Slide 21: Outline
	Slide 22: 2. Sentiment Analysis
	Slide 23: 2.1 Creating the training dataset
	Slide 24: 2.1 Creating the training dataset
	Slide 25: 2.2 Building and training the RNN model
	Slide 26: 2.3 Masking
	Slide 27: 2.3 Masking
	Slide 28: 2.4 Reusing pretrained embeddings and language models
	Slide 29: 2.4 Reusing pretrained embeddings and language models
	Slide 30: Outline
	Slide 31: 3. An Encoder–Decoder Network for Neural Machine Translation
	Slide 32
	Slide 33: 3. An Encoder–Decoder Network for Neural Machine Translation
	Slide 34: 3.1 Creating the training dataset
	Slide 35: 3.1 Creating the training dataset
	Slide 36: 3.1 Creating the training dataset
	Slide 37: 3.1 Creating the training dataset
	Slide 38: 3.2 Building and training the model
	Slide 39: 3.2 Building and training the model
	Slide 40: 3.2 Building and training the model
	Slide 41: 3.3 Translating English to Spanish
	Slide 42: 3.3 Translating English to Spanish
	Slide 43: 3.3 Translating English to Spanish
	Slide 44: 3.4 Bidirectional RNNs
	Slide 45: 3.4 Bidirectional RNNs
	Slide 46: 3.5 Beam Search
	Slide 47: 3.5 Beam search of width 3 to translate “I like soccer” to “me gusta el fútbol”
	Slide 48: Outline
	Slide 49: 4. Attention Mechanisms
	Slide 50: 4.1 Attention Mechanisms – Introduction
	Slide 51: 4.2 Additive Attention (Bahdanau)
	Slide 52: 4.2 Additive Attention (Bahdanau)
	Slide 53: 4.3 Multiplicative Attention - Dot (Luong)
	Slide 54: 4.4 Multiplicative Attention - General (Luong)
	Slide 55: 4.5 Attention Summary
	Slide 56: 4.6 Keras Implementation of Dot Product Attention
	Slide 57: 4.7 Attention Acts as Memory Retrieval Mechanism
	Slide 58: Outline
	Slide 59: 5. Transformer Models
	Slide 60: 5.1 Attention Is All You Need
	Slide 61: 5.1 Attention Is All You Need
	Slide 62: 5.1 Attention Is All You Need
	Slide 63: Encoder Modules
	Slide 64: Decoder Modules
	Slide 65: Positional Encoding
	Slide 66: Transformers Video
	Slide 67: Multi-head Attention
	Slide 68: Attention Video
	Slide 69: 5.2 An Avalanche of Transformer Models
	Slide 70: Introduction
	Slide 71: Introduction
	Slide 72: Generative Pre-trained Transformers (GPT)
	Slide 73: Generative Pre-trained Transformers (GPT)
	Slide 74
	Slide 75: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 76: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 77: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 78: Text-to-Text Transfer Transformer (T5)
	Slide 79: Text-to-Text Transfer Transformer (T5)
	Slide 80: Pathways Language Model (PaLM)
	Slide 81: Large Language Model Meta AI (LLaMA)
	Slide 82: Model Sizes and Training
	Slide 83: Training LLaMA 2 Chat - Helpfulness and Safety
	Slide 84: Training Time and Cost
	Slide 85: Performance – Open-source LLMs
	Slide 86: Performance – Closed-source LLMs
	Slide 87: 5.3 Vision Transformers
	Slide 88: 5.3 Vision Transformers
	Slide 89: 5.4 Hugging Face’s Transformers Library
	Slide 90: Hugging Face Pipeline
	Slide 91: Hugging Face Pipeline
	Slide 92: Manual Usage
	Slide 93: Hugging Face’s Important Links
	Slide 94: Summary
	Slide 95: Exercises

