
Natural Language Processing
with RNNs and Attention

Prof. Gheith Abandah

1

Reference 1

• Chapter 16: Natural Language Processing
 with RNNs and Attention

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3

2

https://github.com/ageron/handson-ml3

Reference 2

• Chapter 10: Sequence-to-sequence models
 and attention

• H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

3

Outline

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

6. Summary

4

1. Generating Shakespearean Text Using a
Character RNN

Procedure

1. Creating the training dataset

2. Building and training the char-RNN model

3. Generating fake Shakespearean text

4. Stateful RNN

5

1.1 Creating the Training Dataset

1. Download and read shakespeare.txt.

2. Split into characters and encode the characters.

3. Convert the long sequence of character IDs into input/target
window pairs.

6

Download and read shakespeare.txt.
import tensorflow as tf

shakespeare_url = "https://homl.info/shakespeare"
 # shortcut URL
filepath = tf.keras.utils.get_file("shakespeare.txt",
 shakespeare_url)
with open(filepath) as f:
 shakespeare_text = f.read()

print(shakespeare_text[:80])

First Citizen:

Before we proceed any further, hear me speak.

All:

Speak, speak.

7

Split into characters and encode the characters.

text_vec_layer =

tf.keras.layers.TextVectorization(split="character",

 standardize="lower")

text_vec_layer.adapt([shakespeare_text])

encoded = text_vec_layer([shakespeare_text])[0]

encoded -= 2 # drop tokens 0 (pad) and 1 (unknown),

 # which we will not use

n_tokens = text_vec_layer.vocabulary_size() – 2

 # number of distinct chars = 39

dataset_size = len(encoded)

 # total number of chars = 1,115,394

8

Convert the long sequence of character IDs into
input/target window pairs.

9

Convert the long sequence of character IDs into
input/target window pairs.

Function to convert a long sequence of character IDs
into a dataset of input/target window pairs
def to_dataset(sequence, length, shuffle=False,
 seed=None, batch_size=32):
 ds = tf.data.Dataset.from_tensor_slices(sequence)
 ds = ds.window(length + 1, shift=1,
 drop_remainder=True)
 ds = ds.flat_map(lambda window_ds:
 window_ds.batch(length + 1))
 if shuffle:
 ds = ds.shuffle(100_000, seed=seed)
 ds = ds.batch(batch_size)
 return ds.map(lambda window: (window[:, :-1],
 window[:, 1:])).prefetch(1)

10

Convert the long sequence of character IDs into
input/target window pairs.

length = 100

tf.random.set_seed(42)

train_set = to_dataset(encoded[:1_000_000],

 length=length, shuffle=True,

 seed=42)

valid_set = to_dataset(encoded[1_000_000:1_060_000],

 length=length)

test_set = to_dataset(encoded[1_060_000:],

 length=length)

11

1.2 Building and Training the Char-RNN
Model
model = Sequential([
 Embedding(input_dim=n_tokens, output_dim=16),
 GRU(128, return_sequences=True),
 Dense(n_tokens, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
 optimizer="nadam",
 metrics=["accuracy"])
model_ckpt = tf.keras.callbacks.ModelCheckpoint(
 "my_shakespeare_model", monitor="val_accuracy",
 save_best_only=True)
history = model.fit(train_set,
 validation_data=valid_set,
 epochs=10,
 callbacks=[model_ckpt])

12

1.3 Generating Fake Shakespearean Text

• RNN output generation is often deterministic, producing the most probable
next token.

• Deterministic outputs may lead to repetitive or predictable sequences.
• Randomness can be introduced to diversify output and improve creativity.
• Temperature parameter controls the level of randomness in output

generation.
• Low temperature

• Produces more confident predictions.
• Higher probability tokens are favored, leading to more deterministic output.

• High temperature
• Increases randomness.
• Allows lower probability tokens to have a higher chance of being selected.

13

Direct text generation

shakespeare_model = tf.keras.Sequential([
 text_vec_layer,
 tf.keras.layers.Lambda(lambda X: X - 2), # no PAD or UNK
 model
])

y_proba = shakespeare_model.predict(
 ["To be or not to b"])[0, -1]
y_pred = tf.argmax(y_proba)
 # choose the most probable character ID
text_vec_layer.get_vocabulary()[y_pred + 2]
e

Problem: Predicts the same sequence always

14

Functions to pick the next char and extend a text.

def next_char(text, temperature=1):

 y_proba = shakespeare_model.predict([text])[0, -1:]

 rescaled_logits = tf.math.log(y_proba) / temperature

 char_id = tf.random.categorical(rescaled_logits,

 num_samples=1)[0, 0]

 return text_vec_layer.get_vocabulary()[char_id + 2]

def extend_text(text, n_chars=50, temperature=1):

 for _ in range(n_chars):

 text += next_char(text, temperature)

 return text

15

Experimenting with temperature

print(extend_text("To be or not to be", temperature=0.01))

To be or not to be the duke
as it is a proper strange death,
and the

print(extend_text("To be or not to be", temperature=1))

To be or not to behold?
second push:
gremio, lord all, a sistermen,

print(extend_text("To be or not to be", temperature=100))

To be or not to bef ,mt'&o3fpadm!$
wh!nse?bws3est--vgerdjw?c-y-ewznq

16

1.4 Stateful RNN

• Stateless RNNs: at each training iteration the model starts with a
hidden state full of zeros.

• Stateful RNN: preserve this final state after processing a training
batch and use it as the initial state for the next training batch.

• The model learns long-term patterns despite only backpropagating
through short sequences.

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=n_tokens,
 output_dim=16,
 batch_input_shape=[1, None]),
 tf.keras.layers.GRU(128, return_sequences=True,
 stateful=True),
 tf.keras.layers.Dense(n_tokens, activation="softmax")
])

17

Preparing a dataset of consecutive sequence
fragments for a stateful RNN

18

Preparing a dataset of consecutive sequence
fragments for a stateful RNN

19

def to_dataset_for_stateful_rnn(sequence, length):

 ds = tf.data.Dataset.from_tensor_slices(sequence)

 ds = ds.window(length + 1, shift=length,

 drop_remainder=True)

 ds = ds.flat_map(lambda window: window.batch(length

 + 1)).batch(1)

 return ds.map(lambda window: (window[:, :-1],

 window[:, 1:])).prefetch(1)

Training the stateful RNN

20

At the end of each epoch, we need to reset the states before

we go back to the beginning of the text.

class ResetStatesCallback(tf.keras.callbacks.Callback):

 def on_epoch_begin(self, epoch, logs):

 self.model.reset_states()

model.compile(loss="sparse_categorical_crossentropy",

 optimizer="nadam", metrics=["accuracy"])

history = model.fit(stateful_train_set,

 validation_data=stateful_valid_set,

 epochs=10, callbacks=[ResetStatesCallback(),

 model_ckpt])

Outline

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

6. Summary

21

2. Sentiment Analysis

• IMDb movie reviews

Procedure

1. Creating the training dataset

2. Building and training the RNN model

3. Masking

4. Reusing pretrained embeddings and language models

22

2.1 Creating the training dataset

import tensorflow_datasets as tfds

The IMDb dataset has 50,000 movie reviews in English

25,000 for training, 25,000 for testing

raw_train_set, raw_valid_set, raw_test_set = tfds.load(

 name="imdb_reviews",

 split=["train[:90%]", "train[90%:]", "test"],

 as_supervised=True

)

train_set = raw_train_set.shuffle(5000,

 seed=42).batch(32).prefetch(1)

valid_set = raw_valid_set.batch(32).prefetch(1)

test_set = raw_test_set.batch(32).prefetch(1)

23

2.1 Creating the training dataset

Simple tokenization using spaces for token boundaries

Limit the vocabulary to 1,000 tokens

Very rare words are not important for this task

vocab_size = 1000

text_vec_layer =

tf.keras.layers.TextVectorization(max_tokens=vocab_size)

text_vec_layer.adapt(train_set.map(lambda reviews,

 labels: reviews))

24

2.2 Building and training the RNN model

embed_size = 128

model = tf.keras.Sequential([

 text_vec_layer,

 tf.keras.layers.Embedding(vocab_size, embed_size),

 tf.keras.layers.GRU(128),

 tf.keras.layers.Dense(1, activation="sigmoid")

])

model.compile(loss="binary_crossentropy",

 optimizer="nadam", metrics=["accuracy"])

history = model.fit(train_set,

 validation_data=valid_set, epochs=2)

25

2.3 Masking

• The accuracy of the previous model is only about 50%.

• When TextVectorization converts reviews to sequences of token
IDs, it pads the shorter sequences using the padding token (with ID
0).

• When the GRU layer goes through many padding tokens, it ends up
forgetting what the review was about!

• Masking makes the model ignore the padding tokens.

26

2.3 Masking

Validation accuracy = 87% after 5 epochs

embed_size = 128

model = tf.keras.Sequential([

 text_vec_layer,

 tf.keras.layers.Embedding(vocab_size, embed_size,

 mask_zero=True),

 tf.keras.layers.GRU(128, dropout=0.2),

 tf.keras.layers.Dense(1, activation="sigmoid")

])

27

2.4 Reusing pretrained embeddings and
language models
• Can use Google’s Universal Sentence Encoder

• Task: Encodes text into high-dimensional vectors for various NLP tasks
like classification, similarity, clustering.

• Input: Variable length English text (sentences, phrases, short
paragraphs).

• Output: 512-dimensional vector capturing text meaning.

• Training: Optimized for sentences, trained on diverse data sources and
tasks for broad NLP applicability.

• Advantage: Models meaning of entire sequences, not just individual
words (compared to word embedding models).

• Available on TensorFlow Hub Library (https://tensorflow.org/hub).
28

https://tensorflow.org/hub

2.4 Reusing pretrained embeddings and
language models
Validation accuracy = 90% after 10 epochs
import os
import tensorflow_hub as hub

os.environ["TFHUB_CACHE_DIR"] = "my_tfhub_cache"
url = "https://tfhub.dev/google/universal-sentence-
encoder/4"
model = tf.keras.Sequential([
 hub.KerasLayer(url, trainable=True, dtype=tf.string,
 input_shape=[]),
 tf.keras.layers.Dense(64, activation="relu"),
 tf.keras.layers.Dense(1, activation="sigmoid")
])

29

Outline

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

6. Summary

30

3. An Encoder–Decoder Network for Neural
Machine Translation
• Encoder: Analyzes source sentence (e.g., English). Uses RNNs (like

LSTMs) to capture word relationships and context. Summarizes the
sentence into a “context vector.”

• Decoder: Generates target sentence (e.g., Spanish). Uses the context
vector and predicts words one-by-one, considering previous
predictions.

• Benefits
• High Accuracy: Captures complex sentence structures and context better than

traditional methods.
• Flexible: Handles variable-length sentences and translates across different

languages effectively.

31

32

3. An Encoder–Decoder Network for Neural
Machine Translation
• English to Spanish translation

Procedure

1. Creating the training dataset

2. Building and training the model

3. Translating English to Spanish

4. Bidirectional RNNs

5. Beam Search

33

3.1 Creating the training dataset

url =

"https://storage.googleapis.com/download.tensorflow.org/

data/spa-eng.zip"

path = tf.keras.utils.get_file("spa-eng.zip",

 origin=url,

 cache_dir="datasets",

 extract=True)

text = (Path(path).with_name("spa-eng") /

 "spa.txt").read_text()

34

3.1 Creating the training dataset
TextVectorization layer doesn’t handle “¡” and “¿”
Parse the sentence pairs, shuffle,
and split into two separate lists

text = text.replace("¡", "").replace("¿", "")
pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle(pairs)
sentences_en, sentences_es = zip(*pairs)

for i in range(3):
 print(sentences_en[i], "=>", sentences_es[i])

How boring! => Qué aburrimiento!
I love sports. => Adoro el deporte.
Would you like to swap jobs? => Te gustaría que
intercambiemos los trabajos?

35

3.1 Creating the training dataset
vocab_size = 1000
max_length = 50
text_vec_layer_en = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_es = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_en.adapt(sentences_en)
text_vec_layer_es.adapt([f"startofseq {s} endofseq" for s in
 sentences_es])

text_vec_layer_en.get_vocabulary()[:10]
['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']

text_vec_layer_es.get_vocabulary()[:10]
['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no',
'tom', 'la']

36

3.1 Creating the training dataset

Split the sequences to train and validation sets

X_train = tf.constant(sentences_en[:100_000])

X_valid = tf.constant(sentences_en[100_000:])

X_train_dec = tf.constant([f"startofseq {s}" for s in

 sentences_es[:100_000]])

X_valid_dec = tf.constant([f"startofseq {s}" for s in

 sentences_es[100_000:]])

Y_train = text_vec_layer_es([f"{s} endofseq" for s in

 sentences_es[:100_000]])

Y_valid = text_vec_layer_es([f"{s} endofseq" for s in

 sentences_es[100_000:]])

37

3.2 Building and training the model

Encoder

encoder_inputs = tf.keras.layers.Input(shape=[],

 dtype=tf.string)

embed_size = 128

encoder_input_ids = text_vec_layer_en(encoder_inputs)

encoder_embedding_layer = tf.keras.layers.Embedding(

 vocab_size, embed_size, mask_zero=True)

encoder_embeddings = encoder_embedding_layer(

 encoder_input_ids)

encoder = tf.keras.layers.LSTM(512, return_state=True)

encoder_outputs, *encoder_state = encoder(

 encoder_embeddings)

38

3.2 Building and training the model
Decoder

decoder_inputs = tf.keras.layers.Input(shape=[],

 dtype=tf.string)

decoder_input_ids = text_vec_layer_es(decoder_inputs)

decoder_embedding_layer = tf.keras.layers.Embedding(

 vocab_size, embed_size, mask_zero=True)

decoder_embeddings = decoder_embedding_layer(

 decoder_input_ids)

decoder = tf.keras.layers.LSTM(512,

 return_sequences=True)

decoder_outputs = decoder(decoder_embeddings,

 initial_state=encoder_state)

output_layer = tf.keras.layers.Dense(vocab_size,

 activation="softmax")

Y_proba = output_layer(decoder_outputs)
39

3.2 Building and training the model

model = tf.keras.Model(inputs=[encoder_inputs,

 decoder_inputs],

 outputs=[Y_proba])

model.compile(loss="sparse_categorical_crossentropy",

 optimizer="nadam", metrics=["accuracy"])

model.fit((X_train, X_train_dec), Y_train, epochs=10,

 validation_data=((X_valid, X_valid_dec),

 Y_valid))

40

accuracy: 0.8402, val_accuracy: 0.6763

3.3 Translating English to Spanish

• At inference time, the decoder is fed as input the word it just output
at the previous time step.

41

3.3 Translating English to Spanish

def translate(sentence_en):

 t = ""

 for word_idx in range(max_length):

 X = np.array([sentence_en]) # encoder input

 X_dec = np.array(["startofseq " + t]) # dec in

 y_proba = model.predict((X, X_dec))[0, word_idx]

 # last token's probas

 predicted_word_id = np.argmax(y_proba)

 predicted_word = text_vec_layer_es.get_vocabulary()

 [predicted_word_id]

 if predicted_word == "endofseq":

 break

 t += " " + predicted_word

 return t.strip()
42

3.3 Translating English to Spanish

It works with very short sentences.

translate("I like soccer")

'me gusta el fútbol'

It struggles with longer sentences.

translate("I like soccer and also going to the beach")

'me gusta el fútbol y a veces mismo al bus'

43

3.4 Bidirectional RNNs

• It is often useful to look ahead at
the next words before encoding
a given word, e.g., “the right
arm”, “the right person”, and
“the right to criticize.”

• Use two recurrent layers on the
same inputs, one reading the
words from left to right and the
other reading them from right to
left, then combine their outputs
at each time step.

44

3.4 Bidirectional RNNs

tf.random.set_seed(42) # extra code – ensures
reproducibility on CPU
encoder = tf.keras.layers.Bidirectional(
 tf.keras.layers.LSTM(256, return_state=True))

concatenate the two short-term states
and the two long-term states
encoder_outputs, *encoder_state = encoder(
 encoder_embeddings)
encoder_state = [tf.concat(encoder_state[::2], axis=-1),
 # short-term (0 & 2)
 tf.concat(encoder_state[1::2], axis=-1)]
 # long-term (1 & 3)

45

accuracy: 0.8577, val_accuracy: 0.6906

Reduced from 512

3.5 Beam Search

• Greedy search in NMT picks the most likely word at each step,
potentially leading to locally optimal but bad translations.

• Beam Search: Explores multiple translation options simultaneously.
Keeps a fixed number of (“beam width”) most probable partial
translations at each step.

• Benefits
• Improved Fluency: Considers diverse contexts, reducing the risk of getting

stuck in poor translations.

• More Accurate: Increases the chance of finding the overall best translation
compared to greedy search.

46

3.5 Beam search of width 3 to translate
 “I like soccer” to “me gusta el fútbol”

47

Outline

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

6. Summary

48

4. Attention Mechanisms

• Introduction

• Additive Attention (Bahdanau)

• Multiplicative Attention – Dot (Luong)

• Multiplicative Attention - General (Luong)

• Attention Summary

• Keras Implementation of Dot Product Attention

• Attention Acts as Memory Retrieval Mechanism

49

4.1 Attention Mechanisms – Introduction

• The traditional encoder-decoder
model has a limitation: it
encodes the entire input
sequence into a single fixed-
length vector, which can be
challenging for long sequences.

• Attention mechanisms address
this limitation by allowing the
decoder to focus on specific
parts of the input sequence
when generating the output.

50

4.2 Additive Attention (Bahdanau)

• Send all the encoder’s outputs to
the decoder.

• The decoder computes a weighted
sum of all the encoder outputs.

• The weight α(t, i) is the weight of
the ith encoder output at the tth
decoder time step.

• For example, if α(3,2) is larger than
α(3,0) and α(3,1), then the decoder
pays more attention to the
encoder’s output for Word 2.

51

4.2 Additive Attention (Bahdanau)

• The alignment model (attention
layer) is trained with the rest of the
model.

• The dense layer outputs a score (or
energy) for each encoder output.

• The softmax layer makes the
weights for a given step add up to
1.

• This is concatenative (or additive)
attention as it concatenates the
encoder output with the decoder’s
previous hidden state.

52

4.3 Multiplicative Attention - Dot (Luong)

• Measures the similarity between
one of the encoder’s outputs and
the decoder’s hidden state using
the dot product.

• Uses the decoder’s current hidden
state (h(t) rather than h(t–1)).

• Uses the output of the attention
mechanism ሚ𝐡(𝑡) directly to
compute the decoder’s predictions.

53

4.4 Multiplicative Attention - General
(Luong)
• The encoder outputs first go

through a fully connected layer
(without a bias term) before the
dot products are computed.

• Luong et al. (2015) compared both
dot product approaches with
concatenative attention (adding a
rescaling parameter vector v).

• The dot product variants
performed better than
concatenative attention.

54

4.5 Attention Summary

• The energy e(t, i) is computed in
one of the three mechanisms:
• Dot product
• General dot product
• Concatenative

• Softmax is used to get the
attention α(t, i).

• Attention is used to find the
decoder’s output as the
weighted sum of the encoder’s
output.

55

4.6 Keras Implementation of Dot Product
Attention
need to pass all encoder’s outputs to the Attention layer

encoder = tf.keras.layers.Bidirectional(

 tf.keras.layers.LSTM(256, return_sequences=True,

 return_state=True))

attention_layer = tf.keras.layers.Attention()

attention_outputs = attention_layer([decoder_outputs,

 encoder_outputs])

output_layer = tf.keras.layers.Dense(vocab_size,

 activation="softmax")

Y_proba = output_layer(attention_outputs)

56

4.7 Attention Acts as Memory Retrieval
Mechanism
• The Keras Attention expects a list

as input, containing two or three
items: the queries, the keys, and
optionally the values.

• If you do not pass any values, then
they are automatically equal to the
keys.

• The decoder outputs are the queries,
and the encoder outputs are both the
keys and the values. For each decoder
output (query), the attention layer
returns a weighted sum of the
encoder outputs (keys/values) that
are most similar to the decoder
output.

57

Outline

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

6. Summary

58

5. Transformer Models

• Attention Is All You Need

• An Avalanche of Transformer Models

• Vision Transformers

• Hugging Face’s Transformers Library

59

5.1 Attention Is All You Need

• Vaswani et al. (2017) created an architecture called the transformer,
which significantly improved the state-of-the-art in NMT without
using any recurrent or convolutional layers, just attention
mechanisms.

✓Doesn’t suffer from the vanishing or exploding gradients problems as
RNNs

✓It can be trained in fewer steps.

✓It’s easier to parallelize across multiple GPUs.

✓It can better capture long-range patterns.

60

5.1 Attention Is All You Need

• The left part is the encoder, and the
right part is the decoder.

• Each embedding layer outputs a 3D
tensor of shape [batch size, sequence
length, embedding size].

• The encoder and the decoder contain
modules that are stacked N times. In
the paper, N = 6.

• The final encoder outputs are fed to
the decoder modules.

61

5.1 Attention Is All You Need

• The encoder’s role is to gradually
transform the inputs until each word’s
representation captures the meaning of
the word, in the context of the sentence.

• The decoder’s role is to gradually
transform each word representation in
the translated sentence into a word
representation of the next word in the
translation.

• After going through the decoder, each
word representation goes through a final
Dense layer with a softmax activation
function.

62

Encoder Modules

• Skip connections

• The multi-head attention layer
updates each word representation by
attending to (i.e., paying attention to)
all other words in the same sentence.

• Normalization layers

• Feedforward modules with two
dense layers each (the first with ReLU
activation, the second with no
activation)

63

Decoder Modules

• Skip connections

• The masked multi-head attention layer
doesn’t attend to words located after it:
it’s a causal layer.

• Multi-head attention layers

• Normalization layers

• The upper multi-head attention layer
does cross-attention, not self-attention.

• Feedforward modules with two dense
layers each (the first with ReLU
activation, the second with no
activation)

64

Positional Encoding

• Dense 3D vectors that represent the position
of each word in the sentence. The nth
positional encoding is added to the word
embedding of the nth word in each sentence.

• Same shape as the output of the embedding
layer.

• The authors of the transformer paper used
fixed positional encodings, based on the sine
and cosine functions at different frequencies.

• Each word in the sentence has a unique
positional encoding.

• The oscillating functions allows the model to
learn relative positions.

65

Transformers Video

• YouTube Video: But what is a GPT? Visual intro to transformers from
3Blue1Brown

https://youtu.be/wjZofJX0v4M

66

https://youtu.be/wjZofJX0v4M

Multi-head Attention

• Based on the scaled dot-product
attention layer; queries Q, keys K,
and values V.

• Found efficiently using matrix
multiplications.

• The multi-head attention layer uses H
splits of the values, keys, and queries:
this allows the model to apply
multiple projections of the word
representation into different
subspaces, each focusing on a subset
of the word’s characteristics.

67

Attention Video

• YouTube Video: Attention in transformers, visually explained from
3Blue1Brown

https://youtu.be/eMlx5fFNoYc

68

https://youtu.be/eMlx5fFNoYc

5.2 An Avalanche of Transformer Models

• Introduction

• Generative Pre-trained Transformers (GPT)

• Bidirectional Encoder Representations from Transformers (BERT)

• Text-to-Text Transfer Transformer (T5)

• Large Language Model Meta AI (LLaMA)

69

Introduction

• In 2016, Google Translate gradually replaced the older statistical
machine translation approach with the newer neural-networks-based
approach that included a seq2seq model combined by LSTM and the
“additive” kind of attention mechanism.

• In 2017, the original (100M-sized) encoder-decoder transformer
model with a faster (parallelizable or decomposable) attention
mechanism was proposed in the "Attention is all you need" paper.
The intent of the transformer model is to take a seq2seq model and
remove its recurrent neural networks, but preserve its additive
attention mechanism.

70

https://en.wikipedia.org/wiki/Google_Translate
https://en.wikipedia.org/wiki/Statistical_machine_translation
https://en.wikipedia.org/wiki/Statistical_machine_translation
https://en.wikipedia.org/wiki/Google_Neural_Machine_Translation
https://en.wikipedia.org/wiki/Attention_is_all_you_need

Introduction

• In 2018, an encoder-only transformer was used in the (more than 1B-
sized) BERT model.

• In 2020, vision transformer and speech-processing convolution-
augmented transformer outperformed recurrent neural networks,
previously used for vision and speech.

• In 2020, difficulties with converging the original transformer were
solved by normalizing layers before (instead of after) multiheaded
attention by Xiong et al. This is called pre-LN Transformer.

• In 2023, unidirectional ("autoregressive") transformers were being
used in the (more than 100B-sized) GPT-3 and
other OpenAI GPT models.

71

https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/Vision_transformer
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer

Generative Pre-trained Transformers (GPT)

• In 2018, OpenAI GPT, “Improving Language
Understanding by Generative Pre-Training.”

• Used self-supervised pretraining (predict the
next token)

• A transformer of a stack of 12 modules (117 M)
• Then they fine-tuned it on various language

tasks, using only minor adaptations for each task.
• Text classification
• Entailment (whether sentence A imposes, involves, or

implies sentence B as a necessary consequence)
• Similarity (e.g., “Nice weather today” is very similar to

“It is sunny”)
• Question answering (given a few paragraphs of text

giving some context, the model must answer some
multiple-choice questions)

72

Generative Pre-trained Transformers (GPT)

• In February 2019, GPT-2 with over 1.5B parameters.

• Zero-shot learning (ZSL), achieves good performance on many tasks
without any fine-tuning.

• In May 2020, GPT-3, 175B parameters, 96 attention layers, each layer
contains 96 attention heads.

73

Model Architecture
Parameter

count
Training data Release date Training cost

GPT-1
12-level, 12-headed Transformer
decoder (no encoder), followed

by linear-softmax.
117 M

BookCorpus:[34] 4.5 GB of
text, from 7000

unpublished books of
various genres.

Jun 11, 2018
30 days on 8

P600 GPUs, or 1
peta FLOP/s-day

GPT-2
GPT-1, but with modified

normalization
1.5 M

WebText: 40 GB of text, 8
million documents, from

45 million webpages
upvoted on Reddit.

Feb 14,
2019 (initial)

Tens of petaflop/s-
day

GPT-3
GPT-2, but with modification to

allow larger scaling
175 B

499 billion tokens
consisting

of CommonCrawl (570 GB),
WebText, English

Wikipedia, and two book
corpora

May 28, 2020
3640 petaflop/s-

day

GPT-3.5 Undisclosed 175 B Undisclosed Mar 15, 2022 Undisclosed

GPT-4

Also trained with both text
prediction and RLHF;

accepts both text and images as
input

Undisclosed
. Estimated

1.7 T
Undisclosed Mar 14, 2023

Undisclosed.
Estimated 2.1e25

FLOP

74

https://en.wikipedia.org/wiki/GPT-1
https://en.wikipedia.org/wiki/BookCorpus
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer#cite_note-34
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/GPT-3
https://en.wikipedia.org/wiki/Common_Crawl
https://en.wikipedia.org/wiki/GPT-3.5
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/wiki/Reinforcement_learning_from_human_feedback
https://en.wikipedia.org/wiki/Multimodal_learning

Bidirectional Encoder Representations from
Transformers (BERT)

• In 2018, Google BERT, “BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.”

• BERTBASE: 12 encoders with 12 bidirectional self-attention heads
totaling 110M parameters

• BERTLARGE: 24 encoders with 16 bidirectional self-attention heads
totaling 340M parameters.

• Pre-trained on the Toronto BookCorpus (800M words) and English
Wikipedia (2,500M words).

75

Bidirectional Encoder Representations from
Transformers (BERT)
• Used self-supervised pretraining (masked language model and next

sentence prediction)

76

Bidirectional Encoder Representations from
Transformers (BERT)

• The DistilBERT model is a small and fast transformer model based on
BERT.

• Trained using distillation: Transferring knowledge from a teacher
model to a student one, which is usually much smaller than the
teacher model.

• This is typically done by using the teacher’s predicted probabilities
for each training instance as targets for the student.

• Distillation often works better than training the student from scratch
on the same dataset as the teacher!

77

Text-to-Text Transfer Transformer (T5)

• In 2019, Google T5, “Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer.”

• Frames all NLP tasks as text-to-text, using an encoder–decoder
transformer.
• “Translate English to Spanish: I like soccer”
• “Summarize:” followed by the paragraph
• “Classify:” followed by the sequence

• Sizes
• T5-Small: 60 M, 8 layers, 6 heads
• T5-Base: 220 M, 12 layers, 12 heads
• T5-Large: 770 M, 24 layers, 156 heads
• T5-3B: 3 B, 24 layers, 32 heads
• T5-11B: 11 B, 24 layers, 96 heads

78

Text-to-Text Transfer Transformer (T5)

• In 2022, Google ByT5, “ByT5: Towards a Token-Free Future with Pre-trained
Byte-to-Byte Models.”

• A variant of the original T5 model, specifically designed to handle raw bytes
of text, no need for subword tokenization methods like SentencePiece.

• Tokenization Approach: ByT5 processes text at the byte level, UTF-8
sequences. This allows it to handle an extremely wide range of human
languages and other data types (like emojis and special characters)
seamlessly.

• ByT5 is trained on a similar mix of tasks as T5, unsupervised and supervised
tasks, derived from a dataset called “Colossal Clean Crawled Corpus” (C4).

79

Pathways Language Model (PaLM)

• In 2022, Google PaLM, “PaLM: Scaling Language Modeling with
Pathways.”

• Has 540 billion parameters, using over 6,000 TPUs.

• Is a standard transformer, using decoders only.

• This model achieved incredible performance on all sorts of NLP tasks,
particularly in natural language understanding (NLU).

• It’s capable of impressive feats, such as explaining jokes, giving
detailed step-by-step answers to questions, and even coding.

• This is in part due to the model’s size, but also thanks to a technique
called Chain of thought prompting.

80

Large Language Model Meta AI (LLaMA)

• LLaMA is a family of large language models (LLMs) by Meta AI.

• Open Source

• LLaMA 1 released in February 2023.

• LLaMA 2 was release on July 18, 2023.

• LLaMA 3 is expected in May 2024.

• LLaMA uses the transformer architecture, the standard architecture
for language modeling since 2018, with some changes.

81

Model Sizes and Training

82

Training LLaMA 2 Chat - Helpfulness and
Safety

83

Training Time and Cost

84

Cost Estimate $5M

Performance – Open-source LLMs

85

Performance – Closed-source LLMs

86

5.3 Vision Transformers

• In 2015, Visual Attention used a convolutional neural network and a
decoder RNN with attention mechanism to generate captions.

• The decoder uses the attention model to focus on just the right part
of the image, e.g., “A woman is throwing a frisbee in a park.

87

5.3 Vision Transformers

• In 2020, Facebook researchers proposed a hybrid CNN–transformer
architecture for object detection.

• In Oct 2020, Google researchers introduced a fully transformer-based
vision model, called vision transformer (ViT). Chops the image into
little 16 × 16 squares and treats the squares as word representations.

• In Mar 2021, DeepMind researchers introduced the Perceiver
architecture. It is a multimodal transformer, meaning you can feed it
text, images, audio, or virtually any other modality.

• In 2021, OpenAI announced DALL·E, capable of generating images
based on text prompts.

88

5.4 Hugging Face’s Transformers Library

• Hugging Face is an AI company that has built a whole ecosystem of
easy-to-use, open-source tools for NLP, vision, and beyond.

• Their Transformers library allows you to easily download a pretrained
model, including its corresponding tokenizer, and then fine-tune it on
your own dataset, if needed.

• Supports TensorFlow, PyTorch, and JAX.

• The simplest way to use the Transformers library is to use the
transformers.pipeline() function. You just specify which task
you want, such as sentiment analysis, and it downloads a default
pretrained model, ready to be used.

89

Hugging Face Pipeline

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

 # many other tasks are available

Default: distilbert-base-uncased-finetuned-sst-2-english

classifier("The actors were very convincing".)

Gives a list containing one dictionary per input text:

[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

Note the bias:

classifier(["I am from India.", "I am from Iraq."])

[{'label': 'POSITIVE', 'score': 0.9896161556243896},

 {'label': 'NEGATIVE', 'score': 0.9811071157455444}]

90

Hugging Face Pipeline

To classify two sentences into:

contradiction, neutral, or entailment

model_name = "huggingface/distilbert-base-uncased-

finetuned-mnli"

classifier_mnli = pipeline("text-classification",

 model=model_name)

classifier_mnli("She loves me. [SEP] She loves me not.")

[{'label': 'contradiction', 'score': 0.9790192246437073}]

91

Manual Usage
from transformers import AutoTokenizer,

 TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = TFAutoModelForSequenceClassification.from_pretrained(

 model_name)

ids = tokenizer(["I like soccer. [SEP] We all love soccer!",

 "Joe lived for a very long time. [SEP] Joe is old."],

 padding=True, return_tensors="tf")

outputs = model(ids)

Y_probas = tf.keras.activations.softmax(outputs.logits)

Y_pred = tf.argmax(Y_probas, axis=1)

Y_pred # 0 = contradiction, 1 = entailment, 2 = neutral

< tf.Tensor: shape = (2,), dtype = int64, numpy = array([2, 1]) >

92

Hugging Face’s Important Links

• Available models: https://huggingface.co/models

• List of tasks: https://huggingface.co/tasks

• Datasets: https://huggingface.co/datasets

• Documentation: https://huggingface.co/docs

93

https://huggingface.co/models
https://huggingface.co/tasks
https://huggingface.co/datasets
https://huggingface.co/docs

Summary

1. Generating Shakespearean Text Using a Character RNN

2. Sentiment Analysis

3. An Encoder–Decoder Network for Neural Machine Translation

4. Attention Mechanisms

5. Transformer Models

94

Exercises

11. Use the Hugging Face Transformers library to download a
pretrained language model capable of generating text (e.g., GPT),
and try generating more convincing Shakespearean text. You will
need to use the model’s generate() method—see Hugging Face’s
documentation for more details.

95

	Slide 1: Natural Language Processing with RNNs and Attention
	Slide 2: Reference 1
	Slide 3: Reference 2
	Slide 4: Outline
	Slide 5: 1. Generating Shakespearean Text Using a Character RNN
	Slide 6: 1.1 Creating the Training Dataset
	Slide 7: Download and read shakespeare.txt.
	Slide 8: Split into characters and encode the characters.
	Slide 9: Convert the long sequence of character IDs into input/target window pairs.
	Slide 10: Convert the long sequence of character IDs into input/target window pairs.
	Slide 11: Convert the long sequence of character IDs into input/target window pairs.
	Slide 12: 1.2 Building and Training the Char-RNN Model
	Slide 13: 1.3 Generating Fake Shakespearean Text
	Slide 14: Direct text generation
	Slide 15: Functions to pick the next char and extend a text.
	Slide 16: Experimenting with temperature
	Slide 17: 1.4 Stateful RNN
	Slide 18: Preparing a dataset of consecutive sequence fragments for a stateful RNN
	Slide 19: Preparing a dataset of consecutive sequence fragments for a stateful RNN
	Slide 20: Training the stateful RNN
	Slide 21: Outline
	Slide 22: 2. Sentiment Analysis
	Slide 23: 2.1 Creating the training dataset
	Slide 24: 2.1 Creating the training dataset
	Slide 25: 2.2 Building and training the RNN model
	Slide 26: 2.3 Masking
	Slide 27: 2.3 Masking
	Slide 28: 2.4 Reusing pretrained embeddings and language models
	Slide 29: 2.4 Reusing pretrained embeddings and language models
	Slide 30: Outline
	Slide 31: 3. An Encoder–Decoder Network for Neural Machine Translation
	Slide 32
	Slide 33: 3. An Encoder–Decoder Network for Neural Machine Translation
	Slide 34: 3.1 Creating the training dataset
	Slide 35: 3.1 Creating the training dataset
	Slide 36: 3.1 Creating the training dataset
	Slide 37: 3.1 Creating the training dataset
	Slide 38: 3.2 Building and training the model
	Slide 39: 3.2 Building and training the model
	Slide 40: 3.2 Building and training the model
	Slide 41: 3.3 Translating English to Spanish
	Slide 42: 3.3 Translating English to Spanish
	Slide 43: 3.3 Translating English to Spanish
	Slide 44: 3.4 Bidirectional RNNs
	Slide 45: 3.4 Bidirectional RNNs
	Slide 46: 3.5 Beam Search
	Slide 47: 3.5 Beam search of width 3 to translate “I like soccer” to “me gusta el fútbol”
	Slide 48: Outline
	Slide 49: 4. Attention Mechanisms
	Slide 50: 4.1 Attention Mechanisms – Introduction
	Slide 51: 4.2 Additive Attention (Bahdanau)
	Slide 52: 4.2 Additive Attention (Bahdanau)
	Slide 53: 4.3 Multiplicative Attention - Dot (Luong)
	Slide 54: 4.4 Multiplicative Attention - General (Luong)
	Slide 55: 4.5 Attention Summary
	Slide 56: 4.6 Keras Implementation of Dot Product Attention
	Slide 57: 4.7 Attention Acts as Memory Retrieval Mechanism
	Slide 58: Outline
	Slide 59: 5. Transformer Models
	Slide 60: 5.1 Attention Is All You Need
	Slide 61: 5.1 Attention Is All You Need
	Slide 62: 5.1 Attention Is All You Need
	Slide 63: Encoder Modules
	Slide 64: Decoder Modules
	Slide 65: Positional Encoding
	Slide 66: Transformers Video
	Slide 67: Multi-head Attention
	Slide 68: Attention Video
	Slide 69: 5.2 An Avalanche of Transformer Models
	Slide 70: Introduction
	Slide 71: Introduction
	Slide 72: Generative Pre-trained Transformers (GPT)
	Slide 73: Generative Pre-trained Transformers (GPT)
	Slide 74
	Slide 75: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 76: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 77: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 78: Text-to-Text Transfer Transformer (T5)
	Slide 79: Text-to-Text Transfer Transformer (T5)
	Slide 80: Pathways Language Model (PaLM)
	Slide 81: Large Language Model Meta AI (LLaMA)
	Slide 82: Model Sizes and Training
	Slide 83: Training LLaMA 2 Chat - Helpfulness and Safety
	Slide 84: Training Time and Cost
	Slide 85: Performance – Open-source LLMs
	Slide 86: Performance – Closed-source LLMs
	Slide 87: 5.3 Vision Transformers
	Slide 88: 5.3 Vision Transformers
	Slide 89: 5.4 Hugging Face’s Transformers Library
	Slide 90: Hugging Face Pipeline
	Slide 91: Hugging Face Pipeline
	Slide 92: Manual Usage
	Slide 93: Hugging Face’s Important Links
	Slide 94: Summary
	Slide 95: Exercises

