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Reference 1

• Chapter 15: Processing Sequences Using
                      RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3 
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Reference 2

• Chapter 7: Getting words in order with
 convolutional neural networks (CNNs)

• H. Lane, C. Howard, and H. Hapke, Natural Language 
Processing in Action: Understanding, analyzing, and 
generating text with Python, Manning, 2019.
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Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent 
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0
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1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series 
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or 
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)
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2.1 Recurrent Neurons

• The figure below shows a recurrent neuron (left), unrolled through 
time (right).
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2.2 Recurrent Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:
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2.3 Memory Cells

• Recurrent neurons have memory (hold state) and are called memory 
cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)
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2.4 Input and Output Sequences

1. Seq to seq net.: For predicting 
the future.

2. Seq to vector: For analysis, 
e.g., sentiment score.

3. Vector to seq: For image 
captioning.

4. Encoder-decoder:  For 
sequence transcription.
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2.5 Training RNNs

• Training using strategy called 
backpropagation through time 
(BPTT).

• Forward pass (dashed)

• Cost function of the not-ignored 
outputs.

• Cost gradients are propagated 
backward through the unrolled 
network.
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3. Forecasting a Time Series

• The data is a sequence of one or 
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future 
values
• Forecast the next value

• Forecast N next values
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Example Problem: Chicago’s Transit Data
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3.1 Preparing the Data for ML
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3.1 Preparing the Data for ML

seq_length = 56

train_ds = tf.keras.utils.timeseries_dataset_from_array(

    rail_train.to_numpy(),

    targets=rail_train[seq_length:],

    sequence_length=seq_length,

    batch_size=32,

    shuffle=True,

    seed=42

)

valid_ds = tf.keras.utils.timeseries_dataset_from_array(

    rail_valid.to_numpy(),

    targets=rail_valid[seq_length:],

    sequence_length=seq_length,

    batch_size=32

) 17



3.2 Forecasting Using a Linear Model

model = tf.keras.Sequential([

    tf.keras.layers.Dense(1, input_shape=[seq_length])

])

early_stopping_cb = tf.keras.callbacks.EarlyStopping(

    monitor="val_mae", patience=50,

    restore_best_weights=True)

opt = tf.keras.optimizers.SGD(learning_rate=0.02,

    momentum=0.9)

model.compile(loss=tf.keras.losses.Huber(),

    optimizer=opt, metrics=["mae"])

history = model.fit(train_ds, validation_data=valid_ds,

    epochs=500, callbacks=[early_stopping_cb])
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MAE = 37,866



3.3 Forecasting Using a Simple RNN

univar_model = tf.keras.Sequential([

    tf.keras.layers.SimpleRNN(32, 

                              input_shape=[None, 1]),

    tf.keras.layers.Dense(1)  # no activation function

])

19

Uses tanh activation 
ht = yt

MAE = 27,703



3.4 Forecasting Using Deep RNNs
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3.4 Forecasting Using Deep RNNs

deep_model = tf.keras.Sequential([

    tf.keras.layers.SimpleRNN(32, return_sequences=True,

                              input_shape=[None, 1]),

    tf.keras.layers.SimpleRNN(32, return_sequences=True),

    tf.keras.layers.SimpleRNN(32),

    tf.keras.layers.Dense(1)

])
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MAE = 31,211



3.5 Forecasting Multivariate Time Series

# Five input values for each time step

# Predict two variats

mulvar_model = tf.keras.Sequential([

    tf.keras.layers.SimpleRNN(32, input_shape=[None,

                                               5]),

    tf.keras.layers.Dense(2)

])
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MAE = 25,330 for rail
MAE = 26,369 for bus



3.6 Forecasting Several Time Steps Ahead

• Can train an RNN to predict all N next values at once (sequence-to-
vector model).

• The output layer should have N neurons.
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3.6 Forecasting Several Time Steps Ahead

# Five input values for each time step

seq2seq_model = tf.keras.Sequential([

    tf.keras.layers.SimpleRNN(32, 

                              input_shape=[None, 5]),

    tf.keras.layers.Dense(14)

])
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3.7 Forecasting Using a Sequence-to-
Sequence Model

# Loss is evaluated at every time step

seq2seq_model = tf.keras.Sequential([

    tf.keras.layers.SimpleRNN(32, 

                              input_shape=[None, 5], 

  return_sequences=True),

    tf.keras.layers.Dense(14)

])
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Forecasts for t + 1, has MAE of 25,519
Forecasts for t + 2, has MAE of 26,274
Forecasts for t + 14, has MAE is 34,322
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4. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers, dropout

model = Sequential()

model.add(layers.SimpleRNN(32, dropout=0.2, recurrent_dropout=0.2, 
input_shape=[None, 5]))

model.add(layers.Dense(14))
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To fight overfitting and 
unstable gradients



4. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN
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4.1 LSTM Cell

• The Long Short-Term Memory 
(LSTM) cell was proposed in 
1997.

• Training converges faster and it 
detects long-term dependencies 
in the data.

• h(t) as the short-term state and 
c(t) as the long-term state.
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model.add(LSTM(20))



4.2 GRU Cell

• The Gated Recurrent Unit (GRU) 
cell was proposed in 2014.

• Simplified version of the LSTM 
cell, performs just as well.

• A single gate controls the forget 
gate and the input gate.
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model.add(GRU(20))
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5.1 1D Convolutional Layers

• Unlike 2D convolution for images, 1D convolution operates over a single 
dimension, making it ideal for analyzing sequences such as sentences, time 
series data, or audio signals.

• Application in NLP: 1D convolutions are used to slide over sequences of 
words or characters, capturing local patterns within the text. This can be 
beneficial for tasks like sentiment analysis, text classification, and entity 
recognition.

• How It Works: A 1D convolutional layer applies filters to a sequence, 
producing a new set of outputs. For instance, with a filter size of 3, each 
output element is computed from one word/token and its two neighbors.

• Benefits:
• Captures local dependencies within the sequence.
• Reduces the dimensionality of the sequence, highlighting important features.
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5.1 Keras Conv1D

# Kernel size is 4 with down sampling by 2 (stride)

conv_rnn_model = tf.keras.Sequential([

    tf.keras.layers.Conv1D(filters=32, kernel_size=4,

                           strides=2, activation="relu",

                           input_shape=[None, 5]),

    tf.keras.layers.GRU(32),

    tf.keras.layers.Dense(14)

])
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5.2 1D Pooling

• Purpose of Pooling: 1D pooling layers are used to downsample sequence 
data. This reduces the computational load, memory usage, and helps to 
prevent overfitting by abstracting higher-level features.

• Types of 1D Pooling:
• Max Pooling: Selects the maximum value from each segment of the sequence.
• Average Pooling: Calculates the average value over each segment, providing a 

smoother representation.

• Application: Often follows a 1D convolutional layer to reduce the length 
and complexity of the sequence while retaining critical information.

• Benefits:
• Helps in capturing the most prominent feature in a local patch of the sequence.
• Reduces the sensitivity to the exact location of features in the sequence.
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5.2 1D Pooling
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5.3 Example: Movie Reviews Sentiment 
Analysis

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from keras.layers import Conv1D, GlobalMaxPooling1D

from nltk.tokenize import TreebankWordTokenizer

from gensim.models import KeyedVectors

word_vectors = KeyedVectors.load_word2vec_format(

    'GoogleNews-vectors-negative300.bin.gz’,

    binary=True, limit=200000)
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def tokenize_and_vectorize(dataset):
    tokenizer = TreebankWordTokenizer()
    vectorized_data = []
    for sample in dataset:
        tokens = tokenizer.tokenize(sample[1])
        sample_vecs = []
        for token in tokens:
            try:
                sample_vecs.append(word_vectors[token])
            except KeyError:
                pass  # No matching
        vectorized_data.append(sample_vecs)
    return vectorized_data

vectorized_data = tokenize_and_vectorize(dataset)

# Then split to 20% test, 80% train …
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filters = 250

kernel_size = 3

maxlen = 400

embedding_dims = 300

model = Sequential()

model.add(Conv1D(filters,

                 kernel_size,

                 padding='valid',

                 activation='relu',

                 strides=1,

                 input_shape=(maxlen, embedding_dims)))
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model.add(GlobalMaxPooling1D())

model.add(Dense(250))

model.add(Dropout(0.2))

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])

model.fit(x_train, y_train,

          batch_size=32,

          epochs=2,

          validation_data=(x_test, y_test))
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6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What 
about a sequence-to-vector RNN, and a vector-to-sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? What does 
each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers 
should have return_sequences=True? What about a sequence-to-vector RNN?

15.4. Suppose you have a daily univariate time series, and you want to forecast the 
next seven days. Which RNN architecture should you use?

15.5. What are the main difficulties when training RNNs? How can you handle 
them?

15.6. Can you sketch the LSTM cell’s architecture?
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