
Processing Sequences Using
RNNs and CNNs

Prof. Gheith Abandah

1

Reference 1

• Chapter 15: Processing Sequences Using
 RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3

2

https://github.com/ageron/handson-ml3

Reference 2

• Chapter 7: Getting words in order with
 convolutional neural networks (CNNs)

• H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

3

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

6. Exercises

7. Summary

4

Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0

5

https://youtu.be/C0xoB8L8ms0

1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)

6

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

6. Exercises

7. Summary

7

2.1 Recurrent Neurons

• The figure below shows a recurrent neuron (left), unrolled through
time (right).

8

2.2 Recurrent Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:

9

2.3 Memory Cells

• Recurrent neurons have memory (hold state) and are called memory
cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)

10

2.4 Input and Output Sequences

1. Seq to seq net.: For predicting
the future.

2. Seq to vector: For analysis,
e.g., sentiment score.

3. Vector to seq: For image
captioning.

4. Encoder-decoder: For
sequence transcription.

11

1. 2.

3. 4.

2.5 Training RNNs

• Training using strategy called
backpropagation through time
(BPTT).

• Forward pass (dashed)

• Cost function of the not-ignored
outputs.

• Cost gradients are propagated
backward through the unrolled
network.

12

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

6. Exercises

7. Summary

13

3. Forecasting a Time Series

• The data is a sequence of one or
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future
values
• Forecast the next value

• Forecast N next values

14

Example Problem: Chicago’s Transit Data

15

3.1 Preparing the Data for ML

16

3.1 Preparing the Data for ML

seq_length = 56

train_ds = tf.keras.utils.timeseries_dataset_from_array(

 rail_train.to_numpy(),

 targets=rail_train[seq_length:],

 sequence_length=seq_length,

 batch_size=32,

 shuffle=True,

 seed=42

)

valid_ds = tf.keras.utils.timeseries_dataset_from_array(

 rail_valid.to_numpy(),

 targets=rail_valid[seq_length:],

 sequence_length=seq_length,

 batch_size=32

) 17

3.2 Forecasting Using a Linear Model

model = tf.keras.Sequential([

 tf.keras.layers.Dense(1, input_shape=[seq_length])

])

early_stopping_cb = tf.keras.callbacks.EarlyStopping(

 monitor="val_mae", patience=50,

 restore_best_weights=True)

opt = tf.keras.optimizers.SGD(learning_rate=0.02,

 momentum=0.9)

model.compile(loss=tf.keras.losses.Huber(),

 optimizer=opt, metrics=["mae"])

history = model.fit(train_ds, validation_data=valid_ds,

 epochs=500, callbacks=[early_stopping_cb])

18

MAE = 37,866

3.3 Forecasting Using a Simple RNN

univar_model = tf.keras.Sequential([

 tf.keras.layers.SimpleRNN(32,

 input_shape=[None, 1]),

 tf.keras.layers.Dense(1) # no activation function

])

19

Uses tanh activation
ht = yt

MAE = 27,703

3.4 Forecasting Using Deep RNNs

20

3.4 Forecasting Using Deep RNNs

deep_model = tf.keras.Sequential([

 tf.keras.layers.SimpleRNN(32, return_sequences=True,

 input_shape=[None, 1]),

 tf.keras.layers.SimpleRNN(32, return_sequences=True),

 tf.keras.layers.SimpleRNN(32),

 tf.keras.layers.Dense(1)

])

21

MAE = 31,211

3.5 Forecasting Multivariate Time Series

Five input values for each time step

Predict two variats

mulvar_model = tf.keras.Sequential([

 tf.keras.layers.SimpleRNN(32, input_shape=[None,

 5]),

 tf.keras.layers.Dense(2)

])

22

MAE = 25,330 for rail
MAE = 26,369 for bus

3.6 Forecasting Several Time Steps Ahead

• Can train an RNN to predict all N next values at once (sequence-to-
vector model).

• The output layer should have N neurons.

23

3.6 Forecasting Several Time Steps Ahead

Five input values for each time step

seq2seq_model = tf.keras.Sequential([

 tf.keras.layers.SimpleRNN(32,

 input_shape=[None, 5]),

 tf.keras.layers.Dense(14)

])

24

3.7 Forecasting Using a Sequence-to-
Sequence Model

Loss is evaluated at every time step

seq2seq_model = tf.keras.Sequential([

 tf.keras.layers.SimpleRNN(32,

 input_shape=[None, 5],

 return_sequences=True),

 tf.keras.layers.Dense(14)

])

25

Forecasts for t + 1, has MAE of 25,519
Forecasts for t + 2, has MAE of 26,274
Forecasts for t + 14, has MAE is 34,322

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

6. Exercises

7. Summary

26

4. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers, dropout

model = Sequential()

model.add(layers.SimpleRNN(32, dropout=0.2, recurrent_dropout=0.2,
input_shape=[None, 5]))

model.add(layers.Dense(14))

27

To fight overfitting and
unstable gradients

4. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN

28

4.1 LSTM Cell

• The Long Short-Term Memory
(LSTM) cell was proposed in
1997.

• Training converges faster and it
detects long-term dependencies
in the data.

• h(t) as the short-term state and
c(t) as the long-term state.

29

model.add(LSTM(20))

4.2 GRU Cell

• The Gated Recurrent Unit (GRU)
cell was proposed in 2014.

• Simplified version of the LSTM
cell, performs just as well.

• A single gate controls the forget
gate and the input gate.

30

model.add(GRU(20))

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

6. Exercises

7. Summary

31

5.1 1D Convolutional Layers

• Unlike 2D convolution for images, 1D convolution operates over a single
dimension, making it ideal for analyzing sequences such as sentences, time
series data, or audio signals.

• Application in NLP: 1D convolutions are used to slide over sequences of
words or characters, capturing local patterns within the text. This can be
beneficial for tasks like sentiment analysis, text classification, and entity
recognition.

• How It Works: A 1D convolutional layer applies filters to a sequence,
producing a new set of outputs. For instance, with a filter size of 3, each
output element is computed from one word/token and its two neighbors.

• Benefits:
• Captures local dependencies within the sequence.
• Reduces the dimensionality of the sequence, highlighting important features.

32

33

5.1 Keras Conv1D

Kernel size is 4 with down sampling by 2 (stride)

conv_rnn_model = tf.keras.Sequential([

 tf.keras.layers.Conv1D(filters=32, kernel_size=4,

 strides=2, activation="relu",

 input_shape=[None, 5]),

 tf.keras.layers.GRU(32),

 tf.keras.layers.Dense(14)

])

34

5.2 1D Pooling

• Purpose of Pooling: 1D pooling layers are used to downsample sequence
data. This reduces the computational load, memory usage, and helps to
prevent overfitting by abstracting higher-level features.

• Types of 1D Pooling:
• Max Pooling: Selects the maximum value from each segment of the sequence.
• Average Pooling: Calculates the average value over each segment, providing a

smoother representation.

• Application: Often follows a 1D convolutional layer to reduce the length
and complexity of the sequence while retaining critical information.

• Benefits:
• Helps in capturing the most prominent feature in a local patch of the sequence.
• Reduces the sensitivity to the exact location of features in the sequence.

35

5.2 1D Pooling

36

5.3 Example: Movie Reviews Sentiment
Analysis

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from keras.layers import Conv1D, GlobalMaxPooling1D

from nltk.tokenize import TreebankWordTokenizer

from gensim.models import KeyedVectors

word_vectors = KeyedVectors.load_word2vec_format(

 'GoogleNews-vectors-negative300.bin.gz’,

 binary=True, limit=200000)

37

def tokenize_and_vectorize(dataset):
 tokenizer = TreebankWordTokenizer()
 vectorized_data = []
 for sample in dataset:
 tokens = tokenizer.tokenize(sample[1])
 sample_vecs = []
 for token in tokens:
 try:
 sample_vecs.append(word_vectors[token])
 except KeyError:
 pass # No matching
 vectorized_data.append(sample_vecs)
 return vectorized_data

vectorized_data = tokenize_and_vectorize(dataset)

Then split to 20% test, 80% train …

38

filters = 250

kernel_size = 3

maxlen = 400

embedding_dims = 300

model = Sequential()

model.add(Conv1D(filters,

 kernel_size,

 padding='valid',

 activation='relu',

 strides=1,

 input_shape=(maxlen, embedding_dims)))

39

model.add(GlobalMaxPooling1D())

model.add(Dense(250))

model.add(Dropout(0.2))

model.add(Activation('relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

model.fit(x_train, y_train,

 batch_size=32,

 epochs=2,

 validation_data=(x_test, y_test))

40

6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What
about a sequence-to-vector RNN, and a vector-to-sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? What does
each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers
should have return_sequences=True? What about a sequence-to-vector RNN?

15.4. Suppose you have a daily univariate time series, and you want to forecast the
next seven days. Which RNN architecture should you use?

15.5. What are the main difficulties when training RNNs? How can you handle
them?

15.6. Can you sketch the LSTM cell’s architecture?

41

Summary

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series

4. Handling long sequences

5. 1D Convolutional Layers

42

	Slide 1: Processing Sequences Using RNNs and CNNs
	Slide 2: Reference 1
	Slide 3: Reference 2
	Slide 4: Outline
	Slide 5: Introduction
	Slide 6: 1. Introduction
	Slide 7: Outline
	Slide 8: 2.1 Recurrent Neurons
	Slide 9: 2.2 Recurrent Layers
	Slide 10: 2.3 Memory Cells
	Slide 11: 2.4 Input and Output Sequences
	Slide 12: 2.5 Training RNNs
	Slide 13: Outline
	Slide 14: 3. Forecasting a Time Series
	Slide 15: Example Problem: Chicago’s Transit Data
	Slide 16: 3.1 Preparing the Data for ML
	Slide 17: 3.1 Preparing the Data for ML
	Slide 18: 3.2 Forecasting Using a Linear Model
	Slide 19: 3.3 Forecasting Using a Simple RNN
	Slide 20: 3.4 Forecasting Using Deep RNNs
	Slide 21: 3.4 Forecasting Using Deep RNNs
	Slide 22: 3.5 Forecasting Multivariate Time Series
	Slide 23: 3.6 Forecasting Several Time Steps Ahead
	Slide 24: 3.6 Forecasting Several Time Steps Ahead
	Slide 25: 3.7 Forecasting Using a Sequence-to-Sequence Model
	Slide 26: Outline
	Slide 27: 4. Handling Long Sequences
	Slide 28: 4. Handling Long Sequences
	Slide 29: 4.1 LSTM Cell
	Slide 30: 4.2 GRU Cell
	Slide 31: Outline
	Slide 32: 5.1 1D Convolutional Layers
	Slide 33
	Slide 34: 5.1 Keras Conv1D
	Slide 35: 5.2 1D Pooling
	Slide 36: 5.2 1D Pooling
	Slide 37: 5.3 Example: Movie Reviews Sentiment Analysis
	Slide 38
	Slide 39
	Slide 40
	Slide 41: 6. Exercises
	Slide 42: Summary

