
Reasoning with Word
Vectors

Prof. Gheith Abandah

1

Reference 1

• Chapter 6: Reasoning with Word Vectors
 (Word2vec)

• H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

2

Outline

• Introduction

• Creating Word Vectors
• Skip-gram

• Continuous bag-of-words

• GloVe

• Custom word vectors

• Word Vector Libraries

• Example Code

3

Introduction to Word Vectors (Word2vec)

• Representing words not just as
symbols but as numerical vectors
that capture their meaning and
relationships with other words.

• Word2vec is a powerful technique
for learning such word vectors.

• Facilitates capturing the semantic
meaning of words, enabling better
performance in NLP tasks.

4

Word2vec Using Skip-gram

• Predicts surrounding words based on a center word.

• It aims to maximize the co-occurrence probability of surrounding
words given a center word.

• Improves at capturing semantic relationships between words.

5

5-grams for “Claude Monet painted the
Grand Canal of Venice in 1806.”

6

7

• Only the weights of the
inputs to the hidden layer
are used for word
embedding.

• The input weight matrix:
• Rows = number of words

• Columns = number of hidden
neurons

Word2vec using Continuous Bag-of-words

• CBOW model predicts a center word based on its surrounding words.

• It aims to maximize the probability of the center word given
surrounding words.

• Often effective at capturing syntactic relationships between words.

8

CBOW 5-grams for “Claude Monet painted
the Grand Canal of Venice in 1806.”

9

10

Skip-Gram vs. CBOW

• Skip-gram approach works well with small corpora and rare terms.

• CBOW shows higher accuracies for frequent words and is much faster
to train.

11

Computational Tricks of Word2vec

• Frequent bigrams: Treat frequent word pairs (bigrams) as single
entities.

• Subsampling frequent tokens: Reducing the representation of high-
frequency words to balance the training data.

• Negative sampling: Instead of updating all word weights, efficiently
train against a small set of selected word pair samples.

12

Word Vectors using GloVe

• GloVe (Global Vectors) is another popular approach for word embeddings.

• Unlike word2vec, which focuses on local context, GloVe leverages statistical
information from the entire corpus.

• It builds word vector representations based on word co-occurrence
statistics.

• Computes the singular value decomposition (SVD) of the co-occurrence
matrix, splitting it into the same two weight matrices that Word2vec
produces.

• Pre-trained GloVe models are available for download.

13

Generating Your Own Word2vec

• You can train your own word2vec model on your custom text corpus.

• This allows you to tailor the word vectors to your specific domain or
application.

• Steps
• Preprocess your text data (split into sentences and words).

• Choose appropriate hyperparameters for the word2vec model (vector size,
window size etc.).

• Train the model for enough time to ensure good quality embeddings.

14

Word2vec Libraries

1. Gensim: Known for its ease of use and efficiency, Gensim is a robust library that supports multiple
word embedding models like Word2Vec, FastText, and Doc2Vec. It is optimized for memory
efficiency and speed, making it suitable for handling large text corpora.

2. FastText: Developed by Facebook Research, FastText is specifically designed for efficient learning
of word representations and sentence classification. It extends Word2Vec to consider subword
information, making it more effective for languages with complex morphology. FastText comes
with pre-trained models in 157 languages and is optimized for performance.

3. spaCy: Includes support for word embeddings. It offers pre-trained models for multiple languages
and integrates seamlessly with other NLP tasks like tokenization, part-of-speech tagging, and
named entity recognition. spaCy's models are optimized for speed and efficiency.

4. Transformers by Hugging Face: This library, although not exclusively focused on word
embeddings, offers state-of-the-art transformer models like BERT, GPT, and their derivatives,
which can be used for generating word embeddings. These models support multiple languages
and are at the forefront of NLP research. The library is designed for ease of use and flexibility.

15

Gensim.word2vec Module

• Gensim is a popular Python library for NLP tasks.

• It provides a user-friendly implementation of word2vec through the
gensim.word2vec module.

• You can load pre-trained models, train on your own corpus, and perform various
word similarity queries.

16

from gensim.models import KeyedVectors

Load a pre-trained word vector model
model_path = 'GoogleNews-vectors-negative300.bin.gz'
model = KeyedVectors.load_word2vec_format(model_path, binary=True,
 limit=3000000)

Get the word embedding of a word

word_embedding = model['computer’]

print(f"Embedding for 'computer':\n{word_embedding}")

Embedding for 'computer':

[1.07421875e-01 -2.01171875e-01 1.23046875e-01 2.11914062e-01

 -9.13085938e-02 2.16796875e-01 -1.31835938e-01 8.30078125e-02

 …

17

Find the most similar words

similar_words =

 model.most_similar(positive=['king', 'woman'],

 negative=['man'], topn=5)

print("Words most similar to 'king' + 'woman' - 'man’:")

for word, similarity in similar_words:

 print(f"{word}: {similarity}")

Words most similar to 'king' + 'woman' - 'man':

queen: 0.7118191123008728

monarch: 0.6189674735069275

princess: 0.5902430415153503

crown_prince: 0.5499458909034729

prince: 0.5377322435379028

18

KING : MAN :: ? : WOMAN

Find unrelated terms

unrelated_terms = model.doesnt_match(

 "breakfast cereal dinner lunch".split())

print(f"Term not related to the others:

{unrelated_terms}")

Term not related to the others: cereal

19

Compute word similarity

similarity_score = model.similarity('woman', 'man’)

print(f"Similarity between 'woman' and 'man':

{similarity_score}")

Similarity between 'woman' and 'man': 0.7664012908935547

20

Summary

• You’ve learned how word vectors and vector-oriented reasoning
can solve some surprisingly subtle problems like analogy
questions.

• You can train Word2vec and other word vector embeddings on
the words you use in your applications.

• Use gensim to explore, visualize, and even build your own word
vector vocabularies.

• If you respect sentence boundaries with your n-grams and are
efficient at setting up word pairs for training, you can greatly
improve the accuracy of your latent semantic analysis word
embeddings.

21

	Slide 1: Reasoning with Word Vectors
	Slide 2: Reference 1
	Slide 3: Outline
	Slide 4: Introduction to Word Vectors (Word2vec)
	Slide 5: Word2vec Using Skip-gram
	Slide 6: 5-grams for “Claude Monet painted the Grand Canal of Venice in 1806.”
	Slide 7
	Slide 8: Word2vec using Continuous Bag-of-words
	Slide 9: CBOW 5-grams for “Claude Monet painted the Grand Canal of Venice in 1806.”
	Slide 10
	Slide 11: Skip-Gram vs. CBOW
	Slide 12: Computational Tricks of Word2vec
	Slide 13: Word Vectors using GloVe
	Slide 14: Generating Your Own Word2vec
	Slide 15: Word2vec Libraries
	Slide 16: Gensim.word2vec Module
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Summary

