
Semantic Analysis

Prof. Gheith Abandah

1



Reference 1

• Chapter 4: Finding meaning in word counts
    (semantic analysis)

• H. Lane, C. Howard, and H. Hapke, Natural Language 
Processing in Action: Understanding, analyzing, and 
generating text with Python, Manning, 2019.

2



Outline

• Limitations of TF-IDF Vectors

• Manual Creation of Topics

• Topic Modeling Algorithms

• Latent Semantic Analysis (LSA)

• LDA Classifier for Two Document Classes

• PCA for Finding Topics in Documents

• Summary

3



Limitations of TF-IDF Vectors

• TF-IDF treats words independently, ignoring synonyms and 
morphology.

• Example: "play" and "playing" are treated differently, even 
though they convey similar meaning.

• Lemmatization reduces words to their base form (lemma) - 
"play" and "playing" become "play".

• Topic vectors capture higher-level themes beyond individual 
words.

4



Manual Creation of Topics

• Select a subset of texts from a corpus.

• Identify common themes or subjects within these texts.

• Group related words under these common themes manually.

• Assign a label to each group, creating a 'topic'.

• Review and refine topics for consistency and relevance.

5



6



J. R. Firth Observation-based Topic Modeling

• Based on the observation by linguist J. R. Firth: "You shall 
know a word by the company it keeps“ (1957).

• Analyze word co-occurrence patterns to identify thematic 
clusters.

• Words that frequently appear together are likely related to a 
similar topic.

• Example: "dog" and "bone" might suggest a topic related to 
pets.

7



Algorithms

• Latent semantic analysis (LSA)

• Linear discriminant analysis (LDA)

• Principal component analysis (PCA)

• Latent Dirichlet allocation (LDiA)

8



Latent Semantic Analysis (LSA)

• Latent means present but not visible.

• LSA uses singular value decomposition (SVD) on the TF-IDF matrix.

• It identifies patterns in the relationships between the terms and 
concepts.

• Reduces the dimensionality of the text data.

• Helps in identifying synonymy (big and large) and polysemy (multiple 
meanings) within the corpus.

• Generates a latent structure of concepts.

9



LDA Classifier for Two Document Classes

• Linear Discriminant Analysis (LDA) is a supervised learning algorithm for 
classification.

• Assumes data is normally distributed.
• Seeks to reduce dimensions while preserving class separation.
• Maximizes the ratio of between-class variance to within-class variance in 

any particular dataset, thereby ensuring maximum separability.
• In NLP, LDA helps to classify documents by finding a linear combination of 

features that characterizes or separates two classes (e.g., spam vs. non-
spam).

• The algorithm finds a decision boundary that best separates the two 
classes.

• Can be particularly effective when the number of features (words) is high.

10



The SMS Spam Dataset Example

import pandas as pd

from nlpia.data.loaders import get_data

pd.options.display.width = 120

sms = get_data('sms-spam')

index = ['sms{}{}'.format(i, '!'*j) for (i,j) in

         zip(range(len(sms)), sms.spam)]

sms = pd.DataFrame(sms.values, columns =

                   sms.columns, index=index)

mask = sms.spam.astype(bool).values

sms['spam'] = sms.spam.astype(int)

11



>>> sms.head(6)

       spam                                               text

sms0      0  Go until jurong point, crazy.. Available only ...

sms1      0                      Ok lar... Joking wif u oni...

sms2!     1  Free entry in 2 a wkly comp to win FA Cup fina...

sms3      0  U dun say so early hor... U c already then say...

sms4      0  Nah I don't think he goes to usf, he lives aro...

sms5!     1  FreeMsg Hey there darling it's been 3 week's n...

12



from sklearn.feature_extraction.text import TfidfVectorizer

from nltk.tokenize.casual import casual_tokenize

tfidf_model = TfidfVectorizer(tokenizer=casual_tokenize)

tfidf_docs = tfidf_model.fit_transform(raw_documents= 

                                       sms.text).toarray()

>>> tfidf_docs.shape

(4837, 9232)             # 4,837 documents and 9,232 words

>>> sms.spam.sum()

638

13



mask = sms.spam.astype(bool).values 

spam_centroid = tfidf_docs[mask].mean(axis=0)

ham_centroid = tfidf_docs[~mask].mean(axis=0)

# subtracting the centroids gives the line between them.

# This is the LDA model.

>>> spam_centroid.round(2)

array([0.06, 0.  , 0.  , ..., 0.  , 0.  , 0.  ])

>>> ham_centroid.round(2)

array([0.02, 0.01, 0.  , ..., 0.  , 0.  , 0.  ])

14



# The dot product computes the projection of each vector

#    on the line between the centroids.

spamminess_score = tfidf_docs.dot(spam_centroid - ham_centroid)

>>> spamminess_score

array([-0.01469806, -0.02007376,  0.03856095, ..., -0.01014774,

       -0.00344281,  0.00395752])

15



# To facilitate classification, scale scores [0, 1]

from sklearn.preprocessing import MinMaxScaler
sms['lda_score'] = MinMaxScaler().fit_transform(
                       spamminess_score.reshape(-1,1))
sms['lda_predict'] = (sms.lda_score > .5).astype(int)

>>> sms['spam lda_predict lda_score'.split()].round(2).head(6)
       spam  lda_predict  lda_score
sms0      0            0       0.23
sms1      0            0       0.18
sms2!     1            1       0.72
sms3      0            0       0.18
sms4      0            0       0.29
sms5!     1            1       0.55

# Classification accuracy of 97.7% with threshold 0.5

16



PCA for Finding Topics in Documents

• Principal component analysis (PCA) is a statistical technique 
to find patterns in data.

• It reduces the dimensionality while preserving variance.

• When applied to TF-IDF, it can reveal the underlying topics.

• PCA finds the principal components that can represent 
topics.

17



Finding SMS Spam Topics with PCA

from sklearn.decomposition import PCA

pca = PCA(n_components=16)
pca = pca.fit(tfidf_docs)
pca_topic_vectors = pca.transform(tfidf_docs)
pca_topic_vectors = pd.DataFrame(pca_topic_vectors, 
                                 columns=['topic{}'.format(i) for i
                                          in range(16)])
>>> pca_topic_vectors.round(3).head()
       topic0  topic1  topic2   ...     topic13  topic14  topic15
sms0    0.201   0.003   0.037   ...      -0.026   -0.019    0.039
sms1    0.404  -0.094  -0.078   ...      -0.036    0.047   -0.036
sms2!  -0.030  -0.048   0.090   ...      -0.017   -0.045    0.057
sms3    0.329  -0.033  -0.035   ...      -0.065    0.022   -0.076
sms4    0.002   0.031   0.038   ...       0.031   -0.081   -0.020

18



Summary

• You can use semantic analysis to decompose and transform 
TF-IDF and BOW vectors into topic vectors.

• Use LDiA when you need to compute explainable topic 
vectors.

• No matter how you create your topic vectors, they can be 
used for semantic search to find documents based on their 
meaning.

• Topic vectors can be used to predict whether a social post is 
spam or is likely to be “liked.”

19


	Default Section
	Slide 1: Semantic Analysis
	Slide 2: Reference 1
	Slide 3: Outline

	Untitled Section
	Slide 4: Limitations of TF-IDF Vectors
	Slide 5: Manual Creation of Topics
	Slide 6
	Slide 7: J. R. Firth Observation-based Topic Modeling
	Slide 8: Algorithms
	Slide 9: Latent Semantic Analysis (LSA)
	Slide 10: LDA Classifier for Two Document Classes
	Slide 11: The SMS Spam Dataset Example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: PCA for Finding Topics in Documents
	Slide 18: Finding SMS Spam Topics with PCA
	Slide 19: Summary


