
Math with Words

Prof. Gheith Abandah

1

Reference 1

• Chapter 3: Math with words
 (TF-IDF vectors)

• H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

2

Outline

• Types of Bags of Words

• Zipf’s Law

• Term Frequency (TF)

• Inverse Document Frequency (IDF)

• TF-IDF Vectors

• Cosine Similarity

• Summary

3

Types of Bags of Words

Definition: A simple NLP model representing text data based on
word occurrence.

1. Standard Bag of Words: Counts word occurrences in a
document.

2. Binary Bag of Words: Indicates presence (1) or absence (0) of
words.

3. N-Grams: Extends BoW by including word pairs or tuples as
features.

4. TF (Term Frequency): Adjusts BoW counts to reflect frequency
rather than occurrence.

4

Zipf's Law in Natural Languages

• Definition: Observes that the frequency of any word is
inversely proportional to its rank in the frequency table.

• Implication: A few words are used very often, while many
are used rarely.

• Example: "the", "is", and "and" often appear at the top of
English word frequency counts.

• Application: Helps in understanding natural language
patterns and optimizing algorithms.

5

Zipf's Law Examples

City Population Distribution Most common words in a document

6

Term Frequency (TF)

• Definition: Measures how frequently a term appears in a
document.

• TF(t, d) = (Number of times term t appears in document d) ÷
 (Total number of terms in document d)

• Purpose: To normalize word counts based on document
length.

7

Example

from collections import Counter

def compute_tf(document):
 words = document.lower().split()
 word_counts = Counter(words)
 total_words = len(word_counts)
 tf = {word: count / total_words for word, count in
 word_counts.items()}
 return tf
Example document
document = "Cats love playing with cats"
tf = compute_tf(document)
print(tf)

{'cats': 0.5, 'love': 0.25, 'playing': 0.25, 'with': 0.25}
8

Representing the Words of a Document as a
Vector

• Vector Space Model: Conceptualizes
documents as vectors of identifiers.

• Dimensions: Each unique word
represents a dimension in the vector
space.

• Word Vectors: Documents are
encoded as numerical vectors based
on word occurrences or TF.

• Use: Facilitates the comparison of
documents through mathematical
operations.

9

Inverse Document Frequency (IDF)

• Definition: Measures how important a term is across a set of
documents.

• IDF(t, D) = log(Total number of documents D ÷
 Number of documents with term t)

• Purpose: To weigh down the frequent terms while scaling up
the rare ones.

10

Example

11

import math

Total number of documents

N = 100000

Number of documents containing each term

n_apple = 20000

n_quantum = 500

Calculate IDF for each term

idf_apple = math.log(N / n_apple)

idf_quantum = math.log(N / n_quantum)

print(idf_apple, idf_quantum)

1.6094379124341003 5.298317366548036

TF-IDF Vectors

• Combination: Multiplication of TF and IDF scores for each
term.

• TF-IDF(t, d, D) = TF(t, d) × IDF(t, D)

• Result: Reflects the importance of words within documents
relative to a document set.

12

Applications of TF-IDF

• Information Retrieval: Improves search engine relevance by
scoring document relevance.

• Document Classification: Helps in categorizing documents
into different classes.

• Feature Selection: Identifies relevant words for use in
machine learning models.

• Text Summarization: Assists in identifying key sentences
based on term significance.

13

Estimating Similarity Using Cosine Similarity

• Definition: Measures the cosine of
the angle between two vectors.

• Application: Determines the
similarity between two documents
in the vector space.

• Cosine Similarity =
(Dot product of vectors) ÷
(Product of their magnitudes)

• Range: -1 (opposite) to 1 (identical),
where 0 indicates orthogonality (no
similarity).

14

Example: Similarity using TF-IDF Vectors

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

Example documents
document_1 = "The school is large."
document_2 = "His school is my school too."
document_3 = "The student goes to school."

Put the documents into a list for vectorization
documents = [document_1, document_2, document_3]

Create a TfidfVectorizer object
tfidf_vectorizer = TfidfVectorizer()

Fit and transform the documents
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)

15

Example: Similarity using TF-IDF Vectors

print(tfidf_vectorizer.get_feature_names_out())
print(tfidf_matrix.shape)

Calculate the cosine similarity between the three documents
similarity = cosine_similarity(tfidf_matrix[0:3],
 tfidf_matrix[0:3])

print(f"Cosine Similarity: {similarity}")

['goes' 'his' 'is' 'large' 'my' 'school' 'student' 'the' 'to’
 'too']

(3, 10)

Cosine Similarity: [[1. 0.36146878 0.29558668]

 [0.36146878 1. 0.15785465]

 [0.29558668 0.15785465 1.]]

16

Summary

• Types of Bags of Words

• Zipf’s Law

• Term Frequency (TF)

• Inverse Document Frequency (IDF)

• TF-IDF Vectors

• Cosine Similarity

17

	Slide 1: Math with Words
	Slide 2: Reference 1
	Slide 3: Outline
	Slide 4: Types of Bags of Words
	Slide 5: Zipf's Law in Natural Languages
	Slide 6: Zipf's Law Examples
	Slide 7: Term Frequency (TF)
	Slide 8: Example
	Slide 9: Representing the Words of a Document as a Vector
	Slide 10: Inverse Document Frequency (IDF)
	Slide 11: Example
	Slide 12: TF-IDF Vectors
	Slide 13: Applications of TF-IDF
	Slide 14: Estimating Similarity Using Cosine Similarity
	Slide 15: Example: Similarity using TF-IDF Vectors
	Slide 16: Example: Similarity using TF-IDF Vectors
	Slide 17: Summary

