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Types of Bags of Words

Definition: A simple NLP model representing text data based on 
word occurrence.

1. Standard Bag of Words: Counts word occurrences in a 
document.

2. Binary Bag of Words: Indicates presence (1) or absence (0) of 
words.

3. N-Grams: Extends BoW by including word pairs or tuples as 
features.

4. TF (Term Frequency): Adjusts BoW counts to reflect frequency 
rather than occurrence.
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Zipf's Law in Natural Languages

• Definition: Observes that the frequency of any word is 
inversely proportional to its rank in the frequency table.

• Implication: A few words are used very often, while many 
are used rarely.

• Example: "the", "is", and "and" often appear at the top of 
English word frequency counts.

• Application: Helps in understanding natural language 
patterns and optimizing algorithms.
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Zipf's Law Examples

City Population Distribution Most common words in a document
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Term Frequency (TF)

• Definition: Measures how frequently a term appears in a 
document.

• TF(t, d) = (Number of times term t appears in document d) ÷
                 (Total number of terms in document d)

• Purpose: To normalize word counts based on document 
length.
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Example 

from collections import Counter

def compute_tf(document):
    words = document.lower().split()
    word_counts = Counter(words)
    total_words = len(word_counts)
    tf = {word: count / total_words for word, count in
          word_counts.items()}
    return tf
# Example document
document = "Cats love playing with cats"
tf = compute_tf(document)
print(tf)

{'cats': 0.5, 'love': 0.25, 'playing': 0.25, 'with': 0.25}
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Representing the Words of a Document as a 
Vector

• Vector Space Model: Conceptualizes 
documents as vectors of identifiers.

• Dimensions: Each unique word 
represents a dimension in the vector 
space.

• Word Vectors: Documents are 
encoded as numerical vectors based 
on word occurrences or TF.

• Use: Facilitates the comparison of 
documents through mathematical 
operations.
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Inverse Document Frequency (IDF)

• Definition: Measures how important a term is across a set of 
documents.

• IDF(t, D) = log(Total number of documents D  ÷ 
                          Number of documents with term t)

• Purpose: To weigh down the frequent terms while scaling up 
the rare ones.
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Example
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import math

# Total number of documents

N = 100000

# Number of documents containing each term

n_apple = 20000

n_quantum = 500

# Calculate IDF for each term

idf_apple = math.log(N / n_apple)

idf_quantum = math.log(N / n_quantum)

print(idf_apple, idf_quantum)

1.6094379124341003 5.298317366548036



TF-IDF Vectors

• Combination: Multiplication of TF and IDF scores for each 
term.

• TF-IDF(t, d, D) = TF(t, d) × IDF(t, D)

• Result: Reflects the importance of words within documents 
relative to a document set.
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Applications of TF-IDF

• Information Retrieval: Improves search engine relevance by 
scoring document relevance.

• Document Classification: Helps in categorizing documents 
into different classes.

• Feature Selection: Identifies relevant words for use in 
machine learning models.

• Text Summarization: Assists in identifying key sentences 
based on term significance.
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Estimating Similarity Using Cosine Similarity

• Definition: Measures the cosine of 
the angle between two vectors.

• Application: Determines the 
similarity between two documents 
in the vector space.

• Cosine Similarity = 
(Dot product of vectors) ÷ 
(Product of their magnitudes)

• Range: -1 (opposite) to 1 (identical), 
where 0 indicates orthogonality (no 
similarity).
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Example: Similarity using TF-IDF Vectors

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Example documents
document_1 = "The school is large."
document_2 = "His school is my school too."
document_3 = "The student goes to school."

# Put the documents into a list for vectorization
documents = [document_1, document_2, document_3]

# Create a TfidfVectorizer object
tfidf_vectorizer = TfidfVectorizer()

# Fit and transform the documents
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
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Example: Similarity using TF-IDF Vectors

print(tfidf_vectorizer.get_feature_names_out())
print(tfidf_matrix.shape)

# Calculate the cosine similarity between the three documents
similarity = cosine_similarity(tfidf_matrix[0:3],
                               tfidf_matrix[0:3])

print(f"Cosine Similarity: {similarity}")

['goes' 'his' 'is' 'large' 'my' 'school' 'student' 'the' 'to’
 'too']

(3, 10)

Cosine Similarity: [[1.         0.36146878 0.29558668]

                    [0.36146878 1.         0.15785465]

                    [0.29558668 0.15785465 1.        ]]
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Summary

• Types of Bags of Words

• Zipf’s Law

• Term Frequency (TF)

• Inverse Document Frequency (IDF)

• TF-IDF Vectors

• Cosine Similarity
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