
Word Tokenization

Prof. Gheith Abandah

1

Reference 1

• Chapter 2: Build your vocabulary
 (word tokenization)

• H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.

2

Reference 2

• Chapter 4: Selecting Libraries and Tools for
 Natural Language Understanding

• Deborah Dahl, Natural Language Understanding with
Python, Packt, 2023.

3

Outline

• NLP Libraries

• Analysis of Movie Reviews Dataset

• Preprocessing Text

• Bag of Words

• Summary

4

NLP Libraries

• Natural Language Toolkit (NLTK)

• spaCy

• TensorFlow/Keras

• PyTorch

• scikit-learn

• Gensim

• WorldCloud

• PyArabic, Farasa, camel-tools

5

NLTK

• NLTK: Python's leading platform for Natural Language Processing (NLP).

• Features: Text processing, classification, tokenization, stemming, tagging.

• Resources: Over 50 corpora and lexical databases, e.g., WordNet.

• Language Support: Extensive for English; tools available for other
languages, including Arabic.

• Applications: Text analysis, sentiment analysis, linguistic research.

• Audience: Ideal for beginners and researchers.

• Getting Started: pip install nltk, followed by nltk.download()
to fetch data.

6

Tokenization with NLTK

7

import nltk

nltk.download() # Run this once

from nltk import word_tokenize

text = "we'd like to book a flight from boston to London"

tokenized_text = word_tokenize(text)

print(tokenized_text)

['we', "'d", 'like', 'to', 'book', 'a', 'flight’,

 'from', 'boston', 'to', 'London']

• Tokenization: breaking text into words

Word Frequency with NLTK

8

from nltk.probability import FreqDist

freq_dist = FreqDist(tokenized_text)

for word, frequency in freq_dist.items():

 print(f"{word}: {frequency}")

we: 1

'd: 1

like: 1

to: 2

book: 1

…

Part-of-speech (POS) Tagging with NLTK

9

pos = nltk.pos_tag(tokenized_text)

print(pos)

[('we', 'PRP'), ("'d", 'MD'), ('like', 'VB'), ('to', 'TO’),

 ('book', 'NN'), ('a', 'DT'), ('flight', 'NN’),

 ('from', 'IN'), ('boston', 'NN'), ('to', 'TO’),

 ('London', 'NNP')]

Tag Glossary

10

spaCy

• A powerful, open-source NLP library designed for production use.

• Key Features: Efficient text processing, easy-to-use API, pre-trained models
for multiple languages.

• Use Cases: Tokenization, part-of-speech tagging, named entity recognition
(NER), dependency parsing, and more.

• Performance: Optimized for speed and accuracy, with support for multi-
threading and GPU.

• Integration: Compatible with deep learning frameworks like TensorFlow
and PyTorch for advanced NLP tasks.

• Getting Started: Install with pip install spacy and easily
download models with spacy download [model name].

11

Tokenization with spaCy

12

import spacy

Need to run:

python -m spacy download en_core_web_sm

nlp = spacy.load('en_core_web_sm')

text = "we'd like to book a flight from boston to london"

doc = nlp(text)

words = [token.text for token in doc]

print (words)

['we', "'d", 'like', 'to', 'book', 'a', 'flight', 'from’,

 'boston', 'to', 'london']

Word Frequency with spaCy

13

from collections import Counter

word_freq = Counter(words)

print(word_freq)

Counter({'to': 2, 'we': 1, "'d": 1, 'like': 1, 'book': 1,

 'a': 1, 'flight': 1, 'from': 1, 'boston': 1,

 'london': 1})

Part-of-speech (POS) Tagging with spaCy

for token in doc:

 print(token.text, token.pos_)

we PRON

'd AUX

like VERB

to PART

book VERB

a DET

flight NOUN

from ADP

boston PROPN

to ADP

london PROPN

14

Named Entity Recognition with spaCy

15

Run on a Jupyter Notebook

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

text = "we'd like to book a flight from boston to new york"

doc = nlp(text)

displacy.render(doc, style='ent’, jupyter=True,

 options={'distance':200})

Syntactic Relationships Analysis with spaCy

16

doc = nlp('they get in an accident')

displacy.render(doc, style='dep’, jupyter=True,

 options={'distance':200})

Keras

• A high-level deep learning API, written in Python, running on top of TensorFlow,
designed for human beings, not machines.

• Why Keras for NLP?: Provides simple and flexible tools for building and training
complex models, including sequence-to-sequence, attention, and more.

• Core Features: Supports recurrent layers like LSTM and GRU, making it perfect
for handling text data and sequence analysis.

• Ease of Use: Simplifies tasks such as tokenization, embedding, and sequence
padding with built-in support.

• Customization and Scalability: Allows for easy customization of models and is
scalable to large datasets and complex model architectures.

• Real-World Applications: Widely used in sentiment analysis, language
translation, text summarization, and more.

• Getting Started: Install with pip install tensorflow.

17

Outline

• NLP Libraries

• Analysis of Movie Reviews Dataset

• Preprocessing Text

• Bag of Words

• Summary

18

Analysis of Movie Reviews Dataset

NLP imports

import nltk

general numerical and visualization imports

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from collections import Counter

#nltk.download()

19

Import the training data

from nltk.corpus import movie_reviews

sents = movie_reviews.sents()

print(sents)

sample = sents[9]

print(sample)

[['plot', ':', 'two', 'teen', 'couples', 'go', 'to', 'a', 'church’,

 'party', ',', 'drink', 'and', 'then', 'drive', '.’],

 ['they', 'get', 'into', 'an', 'accident', '.'], ...]

 ['they', 'seem', 'to', 'have', 'taken', 'this', 'pretty', 'neat’,

 'concept', ',', 'but', 'executed', 'it', 'terribly', '.']

20

Word Frequencies

words = movie_reviews.words()
word_counts = nltk.FreqDist(word.lower() for word in

 words if word.isalpha())
top_words = word_counts.most_common(25)
all_fdist = pd.Series(dict(top_words))
Setting fig and ax into variables
fig, ax = plt.subplots(figsize=(10,10))
Plot with Seaborn plotting tools
…

all_plot = sns.barplot(x = all_fdist.index,

 y = all_fdist.values, ax=ax)
plt.show()

21

22

Word Cloud

from wordcloud import WordCloud

wordcloud =\

 WordCloud(background_color='white',

 max_words=25,

 relative_scaling=0,

 width=600, height=300,

 max_font_size=150,

 colormap='Dark2’, min_font_size=10).

 generate_from_frequencies(all_fdist)

Display the generated image:

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()
23

24

POS Frequencies

tagged_sents = nltk.pos_tag_sents(sents)
total_counts = {}

for sentence in tagged_sents:
 counts = Counter(tag for word, tag in sentence)
 total_counts = Counter(total_counts) + Counter(counts)

sorted_tag_list = sorted(total_counts.items(), key = lambda x:

 x[1],reverse = True)

all_tags = pd.DataFrame(sorted_tag_list)
most_common_tags = all_tags.head(18)

Setting figure and ax into variables
fig, ax = plt.subplots(figsize=(15,15))
all_plot = sns.barplot(x = most_common_tags[0],

 y = most_common_tags[1], ax = ax)
…
plt.show()

25

26

Outline

• NLP Libraries

• Analysis of Movie Reviews Dataset

• Preprocessing Text

• Bag of Words

• Summary

27

Preprocessing Text

• Removing emojis

• Removing smart quotes

• Lower casing

• Lemmatization

• Stopword removal

• Removing punctuation

28

Removing emojis

$ pip install demoji

#replacing emojis with their intepretation
import demoji
text = "Happy birthday! "

emojis_replaced = demoji.replace_with_desc(text)
print(emojis_replaced)

no_emojis = demoji.replace(text,"")
print(no_emojis)

Happy birthday!:birthday cake:

Happy birthday!

29

Removing Smart Quotes

text = "here is a string with “smart” quotes"

text = text.replace("“", "\"").replace("”","\"")

print(text)

here is a string with "smart" quotes

30

Lower Casing

import nltk

mixed_text = "WALK! Going for a walk is great."

mixed_words = nltk.word_tokenize(mixed_text)

print(mixed_words)

lower_words = []

for mixed_word in mixed_words:

 lower_words.append(mixed_word.lower())

print(lower_words)

['WALK', '!', 'Going', 'for', 'a', 'walk', 'is', 'great', '.']

['walk', '!', 'going', 'for', 'a', 'walk', 'is', 'great', '.']

31

Lemmatization (Word Root)

lemmatizing with WordNet

import nltk
nltk.download("wordnet")
from nltk.stem.wordnet import WordNetLemmatizer
from nltk import word_tokenize, pos_tag
from nltk.corpus import wordnet
from collections import defaultdict

align names for POS between WordNet and POS tagger.

tag_map = defaultdict(lambda: wordnet.NOUN)
tag_map["J"] = wordnet.ADJ
tag_map["V"] = wordnet.VERB
tag_map["R"] = wordnet.ADJ

lemmatizer = WordNetLemmatizer()
text_to_lemmatize = "going for a walk is the best exercise. i've
walked every evening this week"

32

Lemmatization (Word Root)

tokens = nltk.word_tokenize(text_to_lemmatize)

lemmatized_result = ""

for token, tag in pos_tag(tokens):

 lemma = lemmatizer.lemmatize(token, tag_map[tag[0]])

 lemmatized_result = lemmatized_result + " " + lemma

print(lemmatized_result)

go for a walk be the best exercise . i 've walk every

evening this week

33

Stopword Removal

import spacy
nlp = spacy.load("en_core_web_sm")

stop_words = nlp.Defaults.stop_words
print(len(stop_words))

text = "This is a sample sentence demonstrating the removal of
stopwords using spaCy."

doc = nlp(text)

filtered_tokens = [token.text for token in doc if not token.is_stop]
filtered_text = " ".join(filtered_tokens)
print(filtered_text)

326

sample sentence demonstrating removal stopwords spaCy .
34

• Stopwords: Common words that are not helpful in distinguishing
documents and so they are often removed.

Removing Punctuation

import spacy
nlp = spacy.load("en_core_web_sm")

text = "Hello, world! This is an example sentence; let's see
how it works."
doc = nlp(text)

filtered_tokens = [token.text for token in doc if

 not token.is_punct]
filtered_text = ' '.join(filtered_tokens)
print(filtered_text)

Hello world This is an example sentence let 's see how it
works

35

Outline

• NLP Libraries

• Analysis of Movie Reviews Dataset

• Preprocessing Text

• Bag of Words

• Summary

36

Bag-of-Words

• Definition: A simple yet powerful feature extraction technique used in NLP for
text analysis.

• Functionality: Transforms text into fixed-length vectors by counting how many
times each word appears.

• Application: Essential for tasks like document classification, sentiment analysis,
and topic modeling.

• Advantages: Easy to understand and implement, making it perfect for beginners
in NLP.

• Limitations: Ignores the order of words, resulting in potential loss of contextual
meaning.

• Variations: Includes binary Bag-of-Words (presence/absence of words) and TF-
IDF (Term Frequency-Inverse Document Frequency) for weighting word
importance.

37

Bag-of-Words (bag for each sentence)

import pandas as pd

sentences = "The school is large.\n" \
 "His school is my school too.\n" \
 "The student goes to school."
corpus = dict()
for i, sent in enumerate(sentences.split('\n')):
 corpus['sent{}'.format(i)] = dict((tok, 1)

 for tok in sent.split())

df = pd.DataFrame.from_records(corpus).fillna(0).astype(int).T
print(df)

 The school is large. His my too. student goes to school.

sent0 1 1 1 1 0 0 0 0 0 0 0

sent1 0 1 1 0 1 1 1 0 0 0 0

sent2 1 0 0 0 0 0 0 1 1 1 1
38

Dot Product Similarity Measure

print(df)

df = df.T
print(df.sent0.dot(df.sent1))
print(df.sent0.dot(df.sent2))
print(df.sent1.dot(df.sent2))

 The school is large. His my too. student goes to school.

sent0 1 1 1 1 0 0 0 0 0 0 0

sent1 0 1 1 0 1 1 1 0 0 0 0

sent2 1 0 0 0 0 0 0 1 1 1 1

2

1

0

39

Example: Similarity using Bag-of-Words

import spacy
from collections import Counter
import numpy as np
nlp = spacy.load("en_core_web_sm")

sentence1 = "The quick brown fox jumps over the lazy dog."
sentence2 = "A quick brown dog outpaces a lazy fox."

def preprocess(text):
 doc = nlp(text.lower())
 clean_tokens = [token.text for token in doc if

 not token.is_punct and not token.is_stop]
 return clean_tokens

tokens1 = preprocess(sentence1)
tokens2 = preprocess(sentence2)
print(tokens1, '\n', tokens2)

['quick', 'brown', 'fox', 'jumps', 'lazy', 'dog']

['quick', 'brown', 'dog', 'outpaces', 'lazy', 'fox']
40

Example: Similarity using Bag-of-Words

bow1 = Counter(tokens1)
bow2 = Counter(tokens2)

Ensure vectors are in the same dimension
all_tokens = set(bow1.keys()).union(set(bow2.keys()))
vector1 = np.array([bow1.get(token, 0) for token in all_tokens])
vector2 = np.array([bow2.get(token, 0) for token in all_tokens])

Compute the dot product for similarity
dot_product = np.dot(vector1, vector2)
norm_product = np.linalg.norm(vector1) * np.linalg.norm(vector2)
similarity = dot_product / norm_product if norm_product else 0

print(f"Similarity: {similarity}")

Similarity: 0.8333333333333335

41

Summary

• NLP Libraries

• Analysis of Movie Reviews Dataset

• Preprocessing Text

• Bag of Words

• Summary

42

	Slide 1: Word Tokenization
	Slide 2: Reference 1
	Slide 3: Reference 2
	Slide 4: Outline
	Slide 5: NLP Libraries
	Slide 6: NLTK
	Slide 7: Tokenization with NLTK
	Slide 8: Word Frequency with NLTK
	Slide 9: Part-of-speech (POS) Tagging with NLTK
	Slide 10: Tag Glossary
	Slide 11: spaCy
	Slide 12: Tokenization with spaCy
	Slide 13: Word Frequency with spaCy
	Slide 14: Part-of-speech (POS) Tagging with spaCy
	Slide 15: Named Entity Recognition with spaCy
	Slide 16: Syntactic Relationships Analysis with spaCy
	Slide 17: Keras
	Slide 18: Outline
	Slide 19: Analysis of Movie Reviews Dataset
	Slide 20: Import the training data
	Slide 21: Word Frequencies
	Slide 22
	Slide 23: Word Cloud
	Slide 24
	Slide 25: POS Frequencies
	Slide 26
	Slide 27: Outline
	Slide 28: Preprocessing Text
	Slide 29: Removing emojis
	Slide 30: Removing Smart Quotes
	Slide 31: Lower Casing
	Slide 32: Lemmatization (Word Root)
	Slide 33: Lemmatization (Word Root)
	Slide 34: Stopword Removal
	Slide 35: Removing Punctuation
	Slide 36: Outline
	Slide 37: Bag-of-Words
	Slide 38: Bag-of-Words (bag for each sentence)
	Slide 39: Dot Product Similarity Measure
	Slide 40: Example: Similarity using Bag-of-Words
	Slide 41: Example: Similarity using Bag-of-Words
	Slide 42: Summary

