Word Tokenization

Prof. Gheith Abandah



Reference 1 p 4  Natural
et Lanquage
it 10CCSSING

% [N ACTION

* Chapter 2: Build your vocabulary

(word tokenization)

* H. Lane, C. Howard, and H. Hapke, Natural Language
Processing in Action: Understanding, analyzing, and
generating text with Python, Manning, 2019.



Reference 2

Natural Language
Understanding with Python

* Chapter 4: Selecting Libraries and Tools for
Natural Language Understanding

DEBORAH A. DAHL

* Deborah Dahl, Natural Language Understanding with
Python, Packt, 2023.



Outline

* NLP Libraries

* Analysis of Movie Reviews Dataset
* Preprocessing Text

* Bag of Words

* Summary



NLP Libraries

e Natural Language Toolkit (NLTK)
* spaCy

e TensorFlow/Keras

* PyTorch

* scikit-learn

* Gensim

* WorldCloud

* PyArabic, Farasa, camel-tools



NLTK

* NLTK: Python's leading platform for Natural Language Processing (NLP).
* Features: Text processing, classification, tokenization, stemming, tagging.
* Resources: Over 50 corpora and lexical databases, e.g., WordNet.

* Language Support: Extensive for English; tools available for other
languages, including Arabic.

* Applications: Text analysis, sentiment analysis, linguistic research.
* Audience: Ideal for beginners and researchers.

e Getting Started: pip install nltk, followed by nltk.download ()
to fetch data.



§ NLTK Downloader — O X
|

Tokenization with NLTK &=

Identifier Size | Status
all All packages n/a installed
I all-corpora All the corpora n/a installed
all-nltk All packages available on nltk_data gh-pages bran n/a installed
book Everything used in the NLTK Book n/a installed
popular Popular packages n/a installed

tests Packages for running tests n/a installed

* Tokenization: breaking text into words bty Tk oy s

import nltk

nltk.download() # Run this once | D] s

Serverinde: https://raw.githubusercontent.com/nlt

Download Directory:|C : \Users\abandah\AppData\Roaming\nlt}

from nltk import word tokenize
text = "we'd like to book a flight from boston to London"
tokenized text = word tokenize (text)

print (tokenized text)

['we', "'d", 'like', 'to', 'book', 'a', 'flight’,
'from', 'boston', 'to', 'London']



Word Frequency with NLTK

from nltk.probability import FreqgDist

freq dist = FreqDist(tokenized text)

for word, frequency in freq dist.items():
print (£f" {word}: {frequency}'")

we: 1
'd: 1
like: 1
to: 2

book: 1



Part-of-speech (POS) Tagging with NLTK

pos = nltk.pos tag(tokenized text)
print (pos)

[('we', '"PRP'), ("'d", 'MD'), ('like', 'VB'), ('to', 'TO’),
('book', 'NN'), ('a', 'DT'), ('flight', 'NN’),

('"from', 'IN'), ('boston', 'NN'), ('to', 'TO’),

('London', 'NNP')]



Tag Glossary

cC Coordinating conjunction
cD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating
conjunction

il Adjective

JIR Adjective, comparative
115 Adjective, superlative

LS List item marker

MDD Modal

NN Moun, singular or mass

MNS
MNP
MNPS
PDT

PRP
PRPS
RB
RBR
RBS
RP
5YM
TO

Moun, plural

Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbaol

to

UH

VB

VBD
VBG
participle
VBN
VBP
present
VBZ
present
WDT
WPp
WPS
WRE

Interjection

Verb, base form

Verh, past tense

Verb, gerund or present

Verb, past participle
Verb, non-3rd person singular

Verb, 3rd person singular

Wh-determiner
Wh-pronoun
Possessive wh-pronoun

Wh-adverb

10



spaCy

* A powerful, open-source NLP library designed for production use.

* Key Features: Efficient text processing, easy-to-use API, pre-trained models
for multiple languages.

» Use Cases: Tokenization, part-of-speech tagging, named entity recognition
(NER), dependency parsing, and more.

* Performance: Optimized for speed and accuracy, with support for multi-
threading and GPU.

* Integration: Compatible with deep learning frameworks like TensorFlow
and PyTorch for advanced NLP tasks.

* Getting Started: Install with pip install spacy and easily
download models with spacy download [model name].

11



Tokenization with spaCy

import spacy

# Need to run:

# python -m spacy download en core web sm

nlp = spacy.load('en core web sm')

text = "we'd like to book a fllght from boston to london"
doc = nlp(text)

words = [token.text for token in doc]

print (words)

['we', "'d", 'like', 'to', 'book', 'a', 'flight', 'from’,
'boston', 'to', 'london']

12



Word Frequency with spaCy

from collections import Counter
word freq = Counter (words)
print (word freq)

Counter({'to': 2, 'we': 1, "'d": 1, 'like': 1, 'book': 1,
'a': 1, 'flight': 1, 'from': 1, 'boston': 1,
'"london': 1})

13



Part-of-speech (POS) Tagging with spaCy

for token in doc:
print (token.text, token.pos )

we PRON

'd AUX

like VERB

to PART

book VERB

a DET

flight NOUN
from ADP
boston PROPN
to ADP
london PROPN

14



Named Entity Recognition with spaCy

# Run on a Jupyter Notebook

import spacy

from spacy import displacy

nlp = spacy.load("en core web sm'")

text = "we'd like to book a flight from boston to new york"
doc = nlp (text)

displacy.render (doc, style='ent’ , jupyter=True,

options={'distance':200})

we'd like to book a flight from = boston GPE to new york GPE

15



Syntactic Relationships Analysis with spaCy

doc = nlp('they get in an accident')
displacy.render (doc, style='dep’ , jupyter=True,

options={'distance':200})

pobj

m m det

they get in an accident

PRON VERB ADP DET NOUN

16



Keras

* A high-level deep learning API, written in Python, running on top of TensorFlow,
designed for human beings, not machines.

 Why Keras for NLP?: Provides simple and flexible tools for building and training
complex models, including sequence-to-sequence, attention, and more.

* Core Features: Supports recurrent layers like LSTM and GRU, making it perfect
for handling text data and sequence analysis.

* Ease of Use: Simplifies tasks such as tokenization, embedding, and sequence
padding with built-in support.

* Customization and Scalability: Allows for easy customization of models and is
scalable to large datasets and complex model architectures.

* Real-World Applications: Widely used in sentiment analysis, language
translation, text summarization, and more.

* Getting Started: Install with pip install tensorflow.

17



Outline

* Analysis of Movie Reviews Dataset
* Preprocessing Text

* Bag of Words
* Summary



Analysis of Movie Reviews Dataset

# NLP imports
import nltk

# general numerical and visualization imports
import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from collections import Counter

#nltk.download()

19



Import the training data

from nltk.corpus import movie reviews
sents = movie reviews.sents ()

print (sents)

sample = sents[9]

print (sample)

[['Plot', ':', 'two', 'teen', 'couples', 'go', 'to', 'a', 'church’,
'party', ',', 'drink', 'and', 'then', 'drive', '.’],
['they', 'get', 'into', 'an', 'accident',K '.'], ...]
['they', 'seem', 'to', 'have', 'taken', 'this', 'pretty', 'neat’,

'concept', ',', 'but', 'executed', 'it', 'terribly',6 '.']



Word Frequencies

words = movie reviews.words ()

word counts = nltk.FreqgDist(word.lower() for word in

words if word.isalpha())
top words = word counts.most common (25)
all fdist = pd.Series(dict(top words))
# Setting fig and ax into variables
fig, ax = plt.subplots(figsize=(10,10))
# Plot with Seaborn plotting tools

all plot = sns.barplot(x = all fdist.index,
y

all fdist.values, ax=ax)
plt.show()

21



Frequency

80000

70000

60000

50000

40000

30000

20000

10000

Frequency -- Top 25 Words in the Movie Review Corpus

) L=

ords

{
5 B
b N
%

22



Word Cloud

from wordcloud import WordCloud
wordcloud =\
WordCloud (background color='white',

max words=25,
relative scaling=0,
width=600, height=300,
max font size=150,
colormap='Dark2’, min font size=10).

generate from frequencies(all fdist)

# Display the generated image:

plt.imshow (wordcloud, interpolation='bilinear')
plt.axis("off")

plt.show ()

23






POS Frequencies

tagged sents nltk.pos tag sents(sents)
total counts {}

for sentence in tagged sents:
counts = Counter (tag for word, tag in sentence)
total counts = Counter(total counts) + Counter (counts)

sorted tag list = sorted(total counts.items(), key = lambda x:
x[1l],reverse = True)

all tags = pd.DataFrame (sorted ta% list)
most common tags = all tags.head(l¥)

? = plt.subplots(figsize=(15,15))
_plot = sns.barplot(x = most common tags[0],

y = most common tags[l], ax = ax)

plt.show ()



Frequency

300000
250000
200000
150000
100000

50000

0
g

2

~
Q

Part of Speech Frequency in Movie Review Corpus

e 288

S = Q
Part of Speech

O

O R = 0O
SR EES

=

Q
L

26



Outline

* Preprocessing Text
* Bag of Words
* Summary



Preprocessing Text

* Removing emojis

* Removing smart quotes
* Lower casing

* Lemmatization

e Stopword removal

* Removing punctuation



Removing emojis

$ pip install demoji

#replacing emojis with their intepretation
import demoji
text = "Happy birthday! f-

1A

emojis replaced = demoji.replace with desc(text)
print (emojis replaced)

no _emojis = demoji.replace(text,"")
print (no_emojis)

Happy birthday! :birthday cake:
Happy birthday!

29



Removing Smart Quotes

text = "here is a string with “smart” quotes"
text = text. replace (n A\ ]| , n\n n) . replace (n ”n , n\n n)
print (text)

here i1is a string with "smart" quotes

30



Lower Casing

import nltk
mixed text = "WALK! Going for a walk is great."

mlxed_WOrds = nltk.word tokenize (mixed text)
prlnt(mlxed words)

lower words = []
for mlxed word in mixed words:
lower words. append(mlxed word. lower ())

print(lowe:_words)

[ WALK', 'I!' 'Going', 'for', 'a', 'walk', 'is', 'great',

14

['walk',6 '!' 'going', 'for', 'a', 'walk',6 'is', 'great',

4

V.V]
'.V]

31



Lemmatization (Word Root)

# lemmatizing with WordNet

import nltk

nltk.download ("wordnet™)

from nltk.stem.wordnet import WordNetLemmatizer
from nltk import word tokenize, pos tag

from nltk.corpus import wordnet

from collections import defaultdict

# align names for POS between WordNet and POS tagger.

tag map = defaultdlct(lambda wordnet.NOUN)
tag map["J"] wordnet.ADJ
tag map["V"] wordnet.VERB
tag map["R"] wordnet.ADJ

lemmatizer = WordNetLemmatizer ()
text to lemmatize = "going for a walk is the best exercise. i've
walked every evening this week"

32



Lemmatization (Word Root)

tokens = nltk.word tokenize(text to lemmatize)
lemmatized result = ""
for token, tag in pos tag(tokens):
lemma = lemmatizer.lemmatize(token, tag map[tag[0]])
lemmatized result = lemmatized result + " " + lemma

print (lemmatized result)

go for a walk be the best exercise . 1 've walk every
evening this week

33



Stopword Removal

* Stopwords: Common words that are not helpful in distinguishing

documents and so they are often removed.
1mport spacy
nlp = spacy.load("en core web sm'")

stop words = nlp.Defaults.stop words
print(len(stop words))

text = "This is a sample sentence demonstrating the removal of
stopwords using spaCy."

doc = nlp(text)

filtered tokens = [token text for token in doc if not token.is stop]
filtered text = " ".join(filtered tokens)
print (filtered text)

326

sample sentence demonstrating removal stopwords spaCy
34



Removing Punctuation

import spacy
nlp = spacy.load("en core web sm")

text = "Hello, world! This is an example sentence; let's see

how i1t works."
doc = nlp(text)

filtered tokens = [token.text for token in doc if

not token.is punct]
filtered text = ' '.join(filtered tokens)
print (filtered text)

Hello world This is an example sentence let
works

's see how it

35



Outline

* Bag of Words
* Summary



Bag-of-Words

* Definition: A simple yet powerful feature extraction technique used in NLP for
text analysis.

* Functionality: Transforms text into fixed-length vectors by counting how many
times each word appears.

* Application: Essential for tasks like document classification, sentiment analysis,
and topic modeling.

* Advantages: Easy to understand and implement, making it perfect for beginners
in NLP.

* Limitations: Ignores the order of words, resulting in potential loss of contextual
meaning.

* Variations: Includes binary Bag-of-Words (presence/absence of words) and TF-
IDF (Term Frequency-Inverse Document Frequency) for weighting word
importance.



Bag-of-Words (bag for each sentence)

import pandas as pd

sentences = "The school is large.\n" \
"His school is my school too.\n" \
"The student goes to school.™”
corpus = dict()
for i, sent in enumerate (sentences.split('\n')):
corpus|'sent{}'.format(i)] = dict((tok, 1)

for tok in sent.split())

df = pd.DataFrame.from records (corpus) .fillna(0) .astype(int) .T
print (df) -

The school 1is 1large. His my too. student goes to school.
sentO 1 1 1 1 0 0 0 0 0 0 0
sentl 0 1 1 0 1 1 1 0 0 0 0

sent?2 1 0 0 0 0 0 0 1 1 1 1
38



Dot Product Similarity Measure

print (df)

df = df.T

print (df.sent0.dot (df.sentl))
print (df.sent0.dot (df.sent2))
print (df.sentl.dot (df.sent2))

The school 1is 1large. His my too. student goes

sent0 1 1 1 1 0 0 0 0
sentl 0 1 1 0 1 1 1 0
sent2 1 0 0 0 0 0 0 1
2
1

0

to

school.

39



Example: Similarity using Bag-of-Words

import SEacy
from collections import Counter

import numpy as np
nlp = spacy.load("en core web sm")

sentencel = "The ick brown fox jumps over the lazy dog."
sentence2 = "A quick brown dog outpaces a lazy fox."

def preprocess (text):
doc = nlp(text.lower())
clean tokens = [token.text for token in doc if

not token.is punct and not token.is stop]
return clean tokens -

tokensl = preprocess (sentencel)
tokens2 = preprocess (sentence2)
print (tokensl, '\n', tokens2)

['quick', 'brown', 'fox', 'Jumps', 'lazy', 'dog']
['quick', 'brown', 'dog', 'outpaces', 'lazy', 'fox']

40



Example: Similarity using Bag-of-Words

bowl
bow2

Counter (tokensl)
Counter (tokens?2)

# Ensure vectors are in the same dimension

all tokens = set(bowl.keys()) .union(set (bow2.keys()))

vectorl = np. array([bowl et(token 0) for token in all tokens])
vector2 = np.array ([bow2. get(token 0) for token in all tokens])

# Compute the dot product for similarity

dot product = np.dot(vectorl, vector2)

norm product = np.linalg. norm(vectorl) * np.linalg.norm(vector2?)
simiTarity = dot product / norm product if norm product else 0

print (£f"Similarity: {similarity}")

Similarity: 0.8333333333333335

41



Summary

* NLP Libraries

* Analysis of Movie Reviews Dataset
* Preprocessing Text

* Bag of Words

* Summary



	Slide 1: Word Tokenization
	Slide 2: Reference 1
	Slide 3: Reference 2
	Slide 4: Outline
	Slide 5: NLP Libraries
	Slide 6: NLTK
	Slide 7: Tokenization with NLTK
	Slide 8: Word Frequency with NLTK
	Slide 9: Part-of-speech (POS) Tagging with NLTK
	Slide 10: Tag Glossary
	Slide 11: spaCy
	Slide 12: Tokenization with spaCy
	Slide 13: Word Frequency with spaCy
	Slide 14: Part-of-speech (POS) Tagging with spaCy
	Slide 15: Named Entity Recognition with spaCy
	Slide 16: Syntactic Relationships Analysis with spaCy
	Slide 17: Keras
	Slide 18: Outline
	Slide 19: Analysis of Movie Reviews Dataset
	Slide 20: Import the training data
	Slide 21: Word Frequencies
	Slide 22
	Slide 23: Word Cloud
	Slide 24
	Slide 25: POS Frequencies
	Slide 26
	Slide 27: Outline
	Slide 28: Preprocessing Text
	Slide 29: Removing emojis
	Slide 30: Removing Smart Quotes
	Slide 31: Lower Casing
	Slide 32: Lemmatization (Word Root)
	Slide 33: Lemmatization (Word Root)
	Slide 34: Stopword Removal
	Slide 35: Removing Punctuation
	Slide 36: Outline
	Slide 37: Bag-of-Words
	Slide 38: Bag-of-Words (bag for each sentence)
	Slide 39: Dot Product Similarity Measure
	Slide 40: Example: Similarity using Bag-of-Words
	Slide 41: Example: Similarity using Bag-of-Words
	Slide 42: Summary

