

Natural Languages Processing

Course Introduction

Prof. Gheith Abandah أ.د. غيث علي عبندة

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Outline

- Basic Information
- Video: Natural Language Processing In 5 Minutes
- Textbook and References
- Course Objectives and Outcomes
- Course Outline
- Grading
- Policies
- Important Dates

Basic Information

- Instructor: Prof. Gheith Abandah
- Email: abandah@ju.edu.jo
- **Office**: CPE 406
- Home page: <u>http://www.abandah.com/gheith</u>
- MS Team: Link
- Office hours: Sun Thu, 13:00 14:00

Natural Language Processing In 5 Minutes

• YouTube Video from Simplilearn

https://youtu.be/CMrHM8a3hqw

Textbook

- 1. H. Lane, C. Howard, and H. Hapke, Natural Language Processing in Action Understanding, analyzing, and generating text with Python, Manning, 2019.
- 2. Course web page at:

https://www.abandah.com/gheith/?page_id=3182

References

- 3. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, 3rd Edition, O'Reilly Media, Oct 2022.
- 4. François Chollet, Deep Learning with Python, 2nd Edition, Manning Pub. Oct 2021.
- 5. Tunstall, Von Werra, and Wolf. Natural language processing with transformers. "O'Reilly Media, Inc.", 2022.
- 6. Cuantum Technologies, Introduction to Natural Language Processing with Transformers, 2023.
- Jurafsky and Martin. "Speech and Language Processing." 3rd Ed. Draft, 2024.

Course Objectives

- 1. Introduce students to the NLP applications and techniques.
- 2. Introduce students to the practical techniques used in developing NLP solutions.
- 3. Introduce students to the programming techniques and libraries used in NLP (Python, Scikit-Learn, NLTK, Gensim, and Keras).
- 4. Enable the students to gain practical skills in solving wide range of NLP problems using modern techniques.

Program Learning Outcomes (PLO)

- Analyze and discuss the basic concepts, principles, techniques, and theories in AIR including artificial neural networks, machine learning, data science, industrial and service robots, and intelligent and autonomous robots.
- 2. Use critical thinking on concepts, principles, and practices related to AIR, and rigorously evaluate tools, techniques, and outcomes using structured arguments based on subject knowledge.
- 3. Apply the methods and techniques of AIR in the design, analysis, and deployment of AIR solutions and solving practical problems.

Program Learning Outcomes (PLO)

- 4. Show the ability to produce distinguished research work from problem inception to implementation, and write quantitative and qualitative reports, and deliver them orally and in writing.
- 5. Demonstrate life-long learning, independent self-learning, and continuous professional development skills, and apply new AIR knowledge.
- 6. Take responsibility, work effectively within a team, abide by professional ethics and societal values in performing tasks and work, and apply work ethics and professional honor codes.
- 7. Use practical research methodologies to analyze and investigate issues related to AIR.

Intended Learning Outcomes (ILO)

No	ILO	PLO
1	Demonstrate a sound understanding of the main techniques and algorithms in NLP.	1
2	Solve an NLP problem by developing an appropriate NLP system.	3
3	Communicate the development of an NLP system through a detailed technical report and a short presentation.	4
4	Use Python and its specialized libraries to develop programs for solving NLP problems.	3

Course Outline

Week	Торіс	ILO	Resources
1	Introduction to NLP	1	1
2	Word tokenization	1, 2, 4	1
3	Math with words: TF-IDF vectors	1, 2, 4	1
4	Semantic analysis	1, 2, 4	1
6	Reasoning with word vectors	1, 2, 4	1
7	Convolutional neural networks in NLP	1, 2, 4	1, 3, 4
8	Recurrent neural networks in NLP	1, 2, 4	1, 3, 4

Course Outline

Week	Торіс	ILO	Resources
9	Long short-term memory networks	1, 2, 4	1, 3, 4
10	Sequence-to-sequence models and	1, 2, 4	1
	attention		
11	Transformers and BERT	1, 2, 4	5,6
12	Named entity extraction and question	1, 2, 4	1
	answering		
13	Dialog engines	1, 2, 4	1
14	Optimization, parallelization, and batch	1, 2, 4	1
	processing		
15	Term Project Presentations	3, 4	3

Grading

Assessment tool	Mark	Topic(s)	Time
Homework assignments	10%	Programming aspects	W2-W14
Midterm exam	30%	Theoretical and practical aspects	W4, W8, W12
Term project report and presentation	20%	Practical and reporting aspects	W15
Final exam	40%	All material	W16
Total	100%		

Policies

- The course uses assignment-based and project-based learning methods.
- Attendance is required
- Makeup exams need acceptable absence cause
- Late penalty is 25%
- All submitted work must be yours. Cheating will not be tolerated
- Open-book exams
- Join the course Microsoft Team at: Link
- Check department announcements on the MS team of MSc in AIR (Link)

Important Dates

Mon 26/2/2024	First Lecture
Mon 29/4/2024	Midterm Exam
Mon 6/5/2024	Term project proposal is due
Mon 20/5/2024	Term project report is due
Mon 27/5/2024	Last Lecture
Sun 2/6 – Thu 13/6/2024	Final Exam Period