CPE432: Computer Architecture and Organization (2)

Course Introduction

Prof. Gheith Abandah أد. غيث علي عبندة

Outline

- Course Information
- Video: Advanced CPU Designs
- Textbook and References
- Course Objectives and Outcomes
- Course Topics
- Policies
- Grading
- Important Dates

Course Information

- Instructor: Prof. Gheith Abandah
- Email: abandah@ju.edu.jo
- Office: **CPE 406**
- Home page: <u>http://www.abandah.com/gheith</u>
- MS Teams: Link
- Prerequisites: CPE 335: Computer Architecture and Organization (1)
- Office hours: **Sun Thu: 13:00 14:00**

Advanced CPU Designs

• From CrashCourse

https://youtu.be/rtAlC5J1U40

Textbook and References

- Patterson and Hennessy. Computer Organization & Design RISC-V Edition: The Hardware/Software Interface, Second ed., Morgan Kaufmann, Elsevier Inc., 2021.
- References:
 - Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 6th ed., Morgan Kaufmann, Elsevier Inc., 2017.
 - J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Superscalar Processors, Mc Graw Hill, 2005.
 - D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach, Morgan Kaufmann, 1998.
 - J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 1998.
- Course slides at: <u>https://www.abandah.com/gheith/?page_id=3176</u>

Course Objectives

- Introduce students to the technological changes in designing and building processors and computers.
- Introduce students to the advanced techniques used in modern processors including pipelining, branch prediction, dynamic and speculative execution, multiple issue, and software optimizations.
- Introduce the students to the basic concepts and technologies used in designing memory and storage systems including cache, main memory, virtual memory, and secondary memory.

Course Outcomes

- Understand and analyze the performance of single-processor architectures [1].
- Understand and analyze the performance of memory hierarchy levels [1].
- Understand the technological improvements and the effect of these improvements on modern computers [4].
- Survey research papers that describe contemporary issues in computer design [4, 7].

Course Topics

- Introduction
- Computer Technology and Performance (1.2, 1.5, 1.7-1.11)
- Processor: Instruction-Level Parallelism (4.6–4.12, 4.15–4.16)

Midterm Exam

- Selected Topics from Parallel Processors (6.3 and 6.4)
- Memory Hierarchy (5.1–5.11, 5.13, 5.16–5.17)

Final Exam

Policies

- Attendance is required
- Be ready to participate in solving class problems
- All submitted work must be yours
- Cheating will not be tolerated
- Open-book exams
- Check department announcements at: <u>http://www.facebook.com/pages/Computer-Engineering-</u> <u>Department/369639656466107</u>

Grading

•	Two Quizzes	10%
•	Technology Trends Research Assessment	10%
	 This assessment will be with Quiz 2 	
•	Midterm Exam	30%
•	Final Exam	50%

Important Dates

Mon 26/2/2024	First Lecture	
Wed 13/3/2024	Announcement of the Research Topic	
Sun 21/4 – Thu 2/5/2024	Midterm Exam Period	
Wed 29/5/2024	Last Lecture	
Thu 30/5/2024	Last Date to Withdraw	
Sun 2/6 – Thu 13/6/2024	Final Exam Period	