0907726 Applied Machine Learning (Fall 2023)

Midterm Exam

el)

KEY

)

Instructions: Time 120 min. Open book and notes exam. No internet usage. Please answer all problems in
the respective shaded rectangular spaces. There are two problems. Notice that this exam has 2 CSV files that

you need to copy to the working directory of your Python project.

P1. The following Python code loads a dataset that has the features x1, x2, x3, and x4 and the response y.
It also creates linear and SVM regressors. Complete this code to achieve the following 6 requirements.

[20 marks]

import numpy as np

import pandas as pd

from sklearn.linear model import LinearRegression
from sklearn.svm import SVR

f = pd.read csv('datasetl.csv')

lr = LinearRegression ()
svr = SVR (kernel="poly", degree=2)

1. Find the number of missing values for each feature and the value counts of the categorical feature.

print(f.info())
print (f.describe ())
Code print(f.x4.value counts())
Numbers x1: 10
x2: 4
0(. x3: 13
missing x4: 0
values
White 277
Green 272
Value Black 226
counts Red 225

2. Draw the scatter matrix of this dataset and find the correlation between the response y and the

numerical features.

import matplotlib.pyplot as plt
pd.plotting.scatter matrix(f, alpha=0.2)
Code plt.show()

print (f.corr() .y)

1of4

Scatter —L
matrix 9 oo ﬁw‘ %
. | e .
Y

x1 -0.579874
x2 0.039128
Correlation x3 0.009580
y 1.000000

3. Drop the feature that has the smallest correlation with the response y and split the dataset to 80%
train set and 20% test set.

f = £f.drop('x3', axis=1)

from sklearn.model selection import train test split
Code train set, test_set = train test split(f, test _size=0.2,
random_state=42)

4. Prepare the features to take care of missing values, long tails, normalization, and categorical values.

from sklearn.impute import SimpleImputer
imp = SimpleImputer (strategy='median')

X num = train set[['x1l', 'x2']]

X num = imp.fit transform (X num)

X num[:, 0] = np.log(X num[:, 0])

Code from sklearn.preprocessing import StandardScaler
std scalar = StandardScaler()
X num = std scalar.fit transform (X num)

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder ()
x4 = enc.fit transform(train set[['x4']]) .toarray()

5. Train the linear and SVR regressors on the prepared train set.

X train = np.c_[X num, x4]
y_train = train set['y'].copy ()
Code lr.fit (X _train, y train)
svr.fit (X train, y train)

20f4

6. Evaluate the two regressors on the test set and report the two RMSEs. Remember to make the
necessary preparations for the test set.

X num = test set[['x1l', 'x2']]

X num = imp.transform (X num)

X num[:, 0] = np.log(X num[:, 0])

X num = std scalar.transform(X num)

x4 = enc.fit_transform(test_set[['x4']]) .toarray()
X test = np.c_[X num, x4]

y_test = test set['y'].copy()

Code from sklearn.metrics import mean_squared error

yp = lr.predict (X test)

lr rmse = mean squared error(y_test, yp, squared=False)
print('LR RMSE = ', 1lr rmse)

yp = svr.predict (X test)
svr_rmse = mean_squared error(y test, yp, squared=False)
print ('SVR RMSE = ', svr_rmse)

LR RMSE = 2.1104137383338246
RMSE SVR RMSE = 0.5575093550292866

3of4

P2. The following Python code loads a dataset that has the features x1, x2, x3, and x4 and class y. It also
creates a random forest classifier. Complete this code to achieve the following 2 requirements.

[10 marks]

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model selection import cross val predict

from sklearn.metrics import accuracy score, confusion matrix

df = pd.read csv('dataset2.csv')

forest clf = RandomForestClassifier (random state=42)

1. Examine this dataset to determine whether any data preparation is needed.

print(df.info())
print (df .nunique())
print(df['y'].value counts())

Code import matplotlib.pyplot as plt
df .hist (bins=50, figsize=(12, 8))
plt.show ()

Preparation
N

needed °

(Yes/No)

2. Using cross validation of 3 folds, evaluate the accuracy and confusion matrix of the random forest
classifier on this dataset.

X = df.drop('y', axis=1)
y = df['y'].copy ()
y_pred = cross_val predict(forest clf, X, y, cv=3)

Calculate accuracy
accuracy = accuracy_ score(y, y_pred)
Code print ("Accuracy:", accuracy)

Calculate and print the confusion matrix
cm = confusion matrix(y, y_pred)

print ("Confusion Matrix:")

print (cm)

Accuracy: 0.786

Accuracy
Confusion Matrix:
[[211 35 3 1]
Confusion [24 185 38 3]
matrix [1 41 177 31]

[O 0 37 213]]

<Good Luck>

4 of 4

