
1 of 5

0917432 Computer Architecture and Organization 2 (Fall 2023)

Midterm Exam

 : التسلسل رقم : التسجيل رقم KEY لاسم:ا
==

Instructions: Time 75 minutes. Open book and notes exam. No electronics. Please answer all problems in the

space provided and limit your answer to the space provided. There are six problems.

<Good Luck>

P1. An IC manufacturing foundry uses 300-mm wafers to produce 31.4-mm2 chips. Assuming that, on

average, 1,000 chips fail the wafer test, and 125 chips fail the part test. Give an estimation of the

manufacturing yield of this chip.

<5 marks>

 Solution:

 Chips/wafer ≈ wafer area / chip area

 = π × r2 / 31.4 ≈ 3.14 × (300/2)2 / 31.4 = 1502 / 10

= 2,250

 Yield = pass chips/wafer / total chips/wafer

 = (2,250 - 1,000 - 125) / 2,250

 = 1,125 / 2,250

 = 50%

2 of 5

P2. A single-cycle implementation of RISC-V ISA runs on 1-GHz processor clock. Assume that the stage

times of a 5-stage pipeline implementation of this ISA are in the table below. What is the expected peak

speedup of the pipeline implementation relative to the single-cycle implementation?

 F D E M W

Stage time 200 ps 100 ps 250 ps 200 ps 100 ps

<4 marks>

 Solution:

 Time between instructions unpipelined = 1 / f = 1 / 1 GHz = 1 ns

 Time between instructions pipelined = time of longest stage = 250 ps

 Peak speedup = Time between instructions unpipelined / Time between instructions pipelined

 = 1 ns / 250 ps = 1000 ps / 250 ps

 = 4

3 of 5

P3. Assume that the following five instructions are executed by the RISC-V pipeline shown below. Assume

that this pipeline has the needed forwarding paths to solve data hazards, and assume that it uses the static

branch prediction: Predict Not Taken. In the table below, specify the values of the shown six fields/signals

when the first instruction has reached the Write-back stage. Note: All numbers shown are in decimal.

<6 marks>

Address Instruction

100000 ld x10, 40(x1)

100004 subi x11, x11, 16

100008 bne x12, x13, 20

100012 add x14, x3, x4

100016 ld x15, 48(x1)

Field/Signal Value

The output of the adder of the IF stage 100020

IF/ID.RegisterRs2 4

ID/EX.RegisterRs1 12

Lower input of the upper adder of the EX stage 40

EX/MEM.MemRead 0

MEM/WB.RegisterRd 10

4 of 5

P4. Assume that the 5-stage pipelined processor studied in the class solves data hazards through stalls and

some forwarding; it only has the forwarding paths from the MEM stage to the EX stage and through the

Register File where results written can be read in the same cycle. Use the multi-cycle pipeline diagram

below to show how this processor executes the instruction sequence shown and indicate any forwarding

using arrow between the involved pipeline stages.

<4 marks>

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 ld x2,0(x1) F D E M W

 add x4,x2,x3 F D D D E M W

 sub x5,x4,x6 F F F D E M W

 sd x6,0(x5) F D E M W

P5. Assume that you have a processor that supports SIMD operations on 512-bit registers. How many load

instructions does this processor need to load the contents of 1,024-element vector. Assume that this vector

holds single-precision floating-point numbers (32 bits each).

<5 marks>

 Solution:

 Elements/SIMD operation = 512 bits / 32 bits = 16 elements

 Number of loads = 1,024 / 16

 = 64 load operations

5 of 5

P6. Unroll the following loop three times and use the table below to schedule the unrolled loop efficiently

for the static dual-issue processor described in the class. Remember that this processor has one pipeline for

ALU and branch instructions and another for the memory instructions. Assume that this processor resolves

branches in the Decode stage and solves data hazards through all necessary forwarding paths. Note: This

loop finds the sum of a 300-element vector.

<6 marks>
 # Assume x1 is initialized to 0

 # x2 is initialized to the starting addresses of a vector

 # x10 has the end-of-loop test value

 loop: add x3, x2, x1

 ld x4, 0(x3)

 add x9, x9, x4

 addi x1, x1, 8

 blt x1, x10, loop

 ALU/branch Load/store Cycle

loop: add x3, x2, x1 nop 1

 nop ld x4, 0(x3) 2

 addi x1, x1, 24 ld x5, 8(x3) 3

 add x9, x9, x4 ld x6, 16(x3) 4

 add x9, x9, x5 nop 5

 add x9, x9, x6 nop 6

 blt x1, x10, loop nop 7

 8

 9

