COMPUTER ORGANIZATION AND DESIGN RISC-V

The Hardware/Software Interface =dition

Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

Last updated 15/10/2023

PC o>

Single-Cycle RISC-V Processor Implementation

PCSrc
>Add M .
> u
X Review
4 —» Add Sum
Read Fee?ster] ALUSrc 4| ALU operation
address g dRea? | - MemWrite
Regd 2 MemtoReg
Instructi register 2
nstruction Registers Read
i Read N ea
- Write data 2 > Address .
Instruction register ata M
memory u
Write X
data _| Write ~ Data
RegWrite " | data memory
MemRead
%2: Imm 64 emRea
Gen

Chapter 4 — The Processor — 2

Contents
4.6 An Overview of Pipelining

4.7 Pipelined Datapath and Control

4.8 Data Hazards: Forwarding versus Stalling
4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

M Chapter 4 — The Processor — 3

Contents

4.6 An Overview of Pipelining
Pipelining Analogy
RISC-V Pipeline

Pipe
Pipe
Pipe
Pipe

iIne Performance
iIning and ISA Design
iIne Hazards

ine Summary

Chapter 4 — The Processor — 4

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism |mproves performance

6 PM 7 9 11 12 1 2 AM

Time — o |

Task

et 5= B For 4 loads:
) Ole=
: @ l.ﬁ. Speedup
D .%. =8/3.5=23

6 PM 7 8 9 10 11 12 1 2 AM Non-StOp (n_)oo):

Time ‘m | | | | | Speedup

order = 2n/(0.5n+1.5) = 4
= number of stages

« B0
Bl
BCs=(l

. 'gl Chapter 4 — The Processor — 5

o O o)

RISC-V Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register

Chapter 4 — The Processor — 6

Pipeline Performance

Assume time for stages is
100ps for register read or write
200ps for other stages

Single-cycle datapath:

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

fo 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Pipelined datapath time = stages x 200 ps = 1,000 ps

Chapter 4 — The Processor — 7

Pipeline Performance

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
Order ! J 1 T T 1 I 1 !
(in instructions)
Id x1, 100(x4) '"SE;T:EO" Reg| ALU | O3 | Reg
Instructi Dat
Id x2, 200(x4) 800 ps Meton | |Re8| AU | ooees |Red
Id x3, 400(x4) 800 ps e
800 ps
Program
execution , 200 400 600 800 1000 1200 1400
Time
order
(in instructions)
ld x1, 100(x4) M| [Rea| AU | o IReg
Id x2, 200(x4) 200 ps '"Sft;l::,:ion Reg| ALU an‘;zs Reg
Id x3, 400(xd) 200 ps ["imen"| |Rea| AW | 022 |Reg

200 ps 200 ps 200ps 200 ps 200 ps

Single-cycle (T.= 800ps)

Pipelined (T,= 200ps)

Chapter 4 — The Processor — 8

Pipeline Speedup

If all stages are balanced
l.e., all take the same time, then

Time between instructions;; qjineq =
Time between instructions
Number of stages

nonpipelined

If not balanced, speedup is less.

Speedup is due to the increased throughput.
Latency (time for each instruction) does not decrease

Chapter 4 — The Processor — 9

Pipelining and ISA Design

RISC-V ISA is designed for pipelining.

All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing
Can calculate address in 3™ stage, access memory in 4t stage

Chapter 4 — The Processor — 10

Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle

1. Structure hazards
When a required resource is busy for another instruction

Chapter 4 — The Processor — 11

Structural Hazards

Conflict for use of a resource

In RISC-V pipeline with a single memory
Load/store requires data access
Instruction fetch would have to stall for that cycle

l o Instruction
\ register
| pc He»| Address g Data

Instruction | Register #
or data ¢ Registers

|

ALUOut

Memory

| Register #

Memory
Data = data 9é»
register

Register #

— The Processor — 12

Structural Hazards

Solution: Pipelined datapaths require separate
instruction/data memories

*r—

PCSrc
M
Add >~ u
X
4 —»| Add Sum
Read > ie?:tem ALUSrc 4| ALU operation
address g dRea(1j | - MemWrite
Rez_ad ot MemtoReg
Instruction register 2
ns -
. Registers p.q Read
) - er_te data 2 Address data
Instruction register ata
memory
Write <
data _|Write Data
RegWrite " | data memory
32 | imm 64 MemRead
Gen

Chapter 4 — The Processor — 13

Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle
1. Structure hazards
When a required resource is busy for another instruction

2. Data hazard

Due to data dependance. Need to wait for previous instruction
to complete its data read/write

Chapter 4 — The Processor — 14

Data Hazards

An instruction depends on completion of data access by
a previous instruction

add x19, x0, x1
sub x2, x19, x3

. 200 400 800 1000 1200 1400 1600
Time : : , |-

600
| | | |
add x19, X0, x1 IF —E ID %—MEM WB§
bubble bubble,) (bubble bubble,) (bubble
@ @ O ©® O
bubble bubble bubble bubble bubble
© © ® ® O
IF

sub x2, x19, x3 —': ID %*MEM WB

Chapter 4 — The Processor — 15

Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle
1. Structure hazards
When a required resource is busy for another instruction

2. Data hazard

Due to data dependance. Need to wait for previous instruction
to complete its data read/write

3. Control hazard

Due to jump and branch instructions. Need to wait for the
address of the next instruction to fetch

Chapter 4 — The Processor — 16

Control Hazards

Branch determines flow of control
Fetching next instruction depends on the branch outcome
Need to find whether the branch is taking or not

Need to calculate the branch target address for taken branch
Instruction

Therefore, fetching the next instruction should wait for the
branch instruction result

Chapter 4 — The Processor — 17

Pipeline Summary

Pipelining improves performance by increasing
instruction throughput

Executes multiple instructions in parallel
Each instruction has the same latency

Subject to hazards
Structure, data, control

Instruction set design affects complexity of pipeline
implementation

Chapter 4 — The Processor — 18

‘ Contents

4.7 Pipelined Datapath and Control

4.8 Data Hazards: Forwarding versus Stalling
4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4 16 Concludlng Remarks

Chapter 4 — The Processor — 19

Contents

4.7 Pipelined Datapath and Control
Five-Stage Pipeline
Pipeline Operation
Pipeline Diagrams
Pipeline Control

Chapter 4 — The Processor — 20

‘ Five-Stage Pipeline

1. IF (F): Fetch instruction from the instruction memory
2. ID (D): Decode instruction and read operands

3. EX (E): Execute operation or calculate address

4. MEM (M): Memory access

5. WB (W): Write result to the register

Chapter 4 — The Processor — 21

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

IF/ID ID/EX EX/MEM MEM/WB
Add > >~ -
4 Add Sum
Shift
left 1
L»/D
M 5
u PC » Address = . |Read
X 2 register 1 Read >
L 1 B data 1
=
- Read Zero > -
Instruction register 2 ALU
- Registers ALU . _ Read
memo —e) Read > »| Address | f
Y _ | write data 2 DM I data M
register u Dat u
Write memory x
data [1x o]
. _ | Write
o 7| data
32 Imm | 64 -
AY P d
| Gen

Chapter 4 — The Processor — 22

‘ Pipeline Operation

We’'ll study cycle-by-cycle flow of instructions through the
pipelined datapath.

We'll look at “single-cycle” diagrams for load & store.

Chapter 4 — The Processor — 23

or Load, Store, ...

Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB

D Add > > \

YAdd Sum| >
Shift
left 1

[
0
M c
u PC @ Address 2 Read
B ; Read
e 4 register 1 - g
1 'g,' data 1
£ Rea_ad > Zero - e
Instruction - register2 ALU ALU Read
memory > ~ Registers pgag - | result - @ Address data ™ 1
Write data 2 o M
register Data u
Write memory x
data 0
o ~_ | Write
- " | data
32‘ _ [Imm 64 >
AL Gen

M(Chapter 4 — The Processor — 24

MORGAN KAUFMANN

ID for Load, Store, ...

Id
I I

Instruction decode

IF/ID ID/EX EX/MEM MEM/WB

Y

>Add

4 —] >Add Sum|
Shift
left 1

 J
|

Y

®
-
M c
u PC [~@-»|Address 2 Read
X S register 1 Read > >
= > -
1] data 1
= Read > Zero > =
Instruction o register2 ALU Read
memory » Registers Roqq . r?slzjlljt - @ Address data ™1 1
Write data 2 = M
register / Data u
Write memory X
data 0
- | Write
w " | data

Imm 64
A Gen

 J

; M(Chapter 4 — The Processor — 25

MORGAN KAUFMANN

=
A

EX for Load

M<

MORGAN KAUFMANN

MEM/WB

A\

| ° |
| Execution |
IF/ID ID/EX EX/MEM
Add > -
4 —p AddSum
Shift
left 1
[
L0
M
u PC @ Address c > Read Read
X 2 register 1 ea > -
1 S data 1
= Read Zero > —
Instruction < register 2 ALU a1y Read
Registers > ea
memory I Wite D0 Read » o result $—>| Address data
register data 2 u Data
Write x memory
data
Write
- > data
32 Imm | 64
\ —_—
7\ Gen

Chapter 4 — The Processor — 26

MEM for Load

| 'd |
| Memory |
IF/ID ID/EX EX/MEM MEM/WB
>Add (— > >
4 — YAdd Sum|
Shift
left 1
0
M c
u PC Address 2 Read
3 i Read
X 2 register 1 P >
1 w data 1
= Read \ Zero — -
Instruction o register 2 ALU AU Read
memory o) Registers pead > result > @ Address data [™]

Write data 2 -

register Data

Write memory

data

_ _ | write
o | data
32 imm | 64 >
L - ——
\ i Gen

M<

MORGAN KAUFMANN

Chapter 4 — The Processor — 27

=
A

WB for Load

rite-back
IF/ID ID/EX EX/MEM MEM/WB
Sada | . - \
4 —p] >Add Sum)| '
Shift
left 1
®

0

M =

u PC |-@—»|Address -%

x = > >

1 2

= > Zero > =
Instruction _ ALU Ay Read
memory v > 0 result > | Address d:taa >
M /
u Data
X memory
/ 1
/ _ _ | write
Wrong g > data
register S LR N || >
AN Gen
number

MORGAN KAUFMANN

; M(Chapter 4 — The Processor — 28

orrected Datapath for Load

IF/ID ID/EX EX/MEM MEM/WB
>Add > >
4 —] »Add Sum
Shift
left 1
[2
0
M c
u PC @ Address -.'_—.nc: | Read
x 2 register 1 Read > >
1 * data 1
< Read > Zero > ——
Instruction _ | register 2 ALU - Ay Read
memory -) Registers pead . result > | Address data ™ (1
| Write data 2 w M
register Data u
Write memory X
*| data g
__ o | Write
= " | data
32 64 >

MORGAN KAUFMANN

% M(Chapter 4 — The Processor — 29

=
A

EX for Store

M<

MORGAN KAUFMANN

MEM/WB

\

| N |
| Execution |
IF/ID ID/EX EX/MEM
> Add > > >
4 — AddSum
Shift
left 1
®
-0
M
u PC —@—| Address = . |Read Read
[=] L .
= register 1 > -
X g g data 1
= Read Zero - =
Instruction . < registeé 2 t ALU alu| Add Read
. > —— ress
memory Wit egis ersRea d > %Jl result data
register data 2 - Data
Write b'e memory
data 1
_ Write
- © | data
3% Imm | 64 |
V| Gen

Ox c =

Chapter 4 — The Processor — 30

MEM for Store

| 'd |
| Memory |
IF/ID ID/EX EX/MEM MEM/WB
>Add > >
4 — YAdd Sum|
Shift
left 1
L
0
M =
u PC @] Address -% _ | Read
X 2 " | register 1 Read > >
1 w data 1
= Read > Zero - i
Instruction . register2 ALU ALU Read
memory o) Registers pead > result > @ Address data [™] 0

Write data 2 - M

register Data u

Write memeory X

data 1

- _ | wiite
o | data
32 imm | 64 >
L - ——
wr Gen

MORGAN KAUFMANN

% M(Chapter 4 — The Processor — 31

WB for Store

>Add

u PC

M<

MORGAN KAUFMANN

Address

Instruction
memory

A

Read
data

sd |
W

rite-back

MEM/WB

IF/ID ID/EX EX/MEM
»Add Sum >
Shift
left 1
S
£ Read
2 register 1 Read > >
% data 1
= Read Zero > a
register2 >ALU ALU
Registers .4 _ it - [~ Address
Write data 2 o e
register / Data
Write memory
data
- | Write
- " | data
32 Imm

-
o Gen

Y

Chapter 4 — The Processor — 32

Pipeline Diagrams

1. Single-clock-cycle pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used

2. Multi-clock-cycle diagram
Graph of operation over time

Chapter 4 — The Processor — 33

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| add x14, x5, x6 | Id x13, 48(x1) | add x12, x3, x4 | sub x11, x2, x3 | Id x10, 40(x1) |
| Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
Add >
4 —p Add Sum|
Shift
left 1
¢
= ()
M
u PC Address Read
X 5 register 1 Read
1 k] data 1 o
—E Read Zero > =
Instruction c register 2 ALU
I Registers p..4 ALU > Add Read L 1
memory o | wiite data 2 ™% result ress dala "
register u Data z
| Write X memory
data r 1 0
Write
data
32 Imm 6‘\4 >
@ ' _—

M< Chapter 4 — The Processor — 34

MORGAN KAUFMANN

Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 (oo CCs8 CC9

Program
execution
order

(in instructions) - - —
g 1
Id x10, 40(x1) IM ~|]—ElRleg| —[DM— —Ee_g:
I 1
sub x11, X2, X3 M Reg oM —Reg
- - =
add x12, x3, x4 M FReg[| [OALU oM —Reg
| -1
Id x13, 48(x1) IM | Reg % -I:DM— —Eeg|
|l 1

[~ i 1
add x14, x5, X6 IM |— —EilReg| SALU -&FH—EQJ
Y — _

Chapter 4 — The Processor — 35

Multi-Cycle Pipeline Diagram

Traditional form

Time (in clock cycles)

Program
execution
order

(in instructions)

Id x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
Id x13, 48(x1)

add x14, x5, x6

Y

CC 1 CC 2 CC3 CC4 CC5S CC®6 CC7 CC38 CC9
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access

Chapter 4 — The Processor — 36

Multi-Cycle Pipeline Diagram
Form used in this class

12 3 45 67 8 9
1d x10,40(x1) FDE MW
sub x11,x2,x3 FDEMMW
add x12,x3,x4 F DE MW
1d x13,48(x1) F D E MW
add x14,x5,x6 FDE MW

Chapter 4 — The Processor — 37

Pipelined Control (Simplified)

=
A

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
4 — »AddSum >
Shift Branch
left 1 L
[
L0 RegWrite
M |
u PC e—|Address 5 = Read
X 5 register 1 Read - - MemWrite
| 1 S data 1 i W =
3 Read ALUSrc Zerol—» emtoReg
Instruction _l reglstel£2 ist >Add ALU _ Read
memory Write €gIs ersg{etadz > result [—9—>| Address data [
- i ata
»| register / Data
Write memory
data
_ | Write
X - " | data
Instruction
[31-0] 31\2 Imm | 64 -
[- —
] ' Gen MemRead
Instruction
[30, 14-12]
¥ -
Instruction
[11-7] - ALUOp > -
M<K eh

MORGAN KAUFMANN

apter4— The Processor — 38

Pipelined Control

Control signals derived from instruction
As In single-cycle implementation

N\ "l wB
Instruction
1 Control E M | WB
EX] .. M WB
IF/ID ID/IEX EX/MEM MEM/WB

Chapter 4 — The Processor — 39

Pipelined Control

PCSrc

ID/EX
ws LEX/MEM
WB
Control M L MEM/WB
> EX M WB [—
IF/ID
4) Add Sum|
Shift Branch
2 left 1 L |
= ALUSrc }
o
g |
0 o i)
M 2 g
u PC » Address 5 = Read 5 %
x] register 1 Read > > 2 =
1 E] data 1 [}
g Read ZeroH—» — =
Instruction = register 2 ALU a1y Read
memory > —e Write ReglstersRea d _ - 6M re% > Address data [T 1M
»| register data 2 u / Data u
—»| Write x memory Ox
data -\
_ Write
o data
Instruction
[31-0] 32 Imm | 64
= Gen — MemRead
Instruction
ALU
[30, 14-12] > » control
Instruction
[11-71 - - .

MORGAN KAUFMANN

/g\ M(Chapter4— The Processor — 40

‘ Contents

4.8 Data Hazards: Forwarding versus Stalling
4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Mg Chapter 4 — The Processor — 41

Contents

4.8 Data Hazards: Forwarding versus Stalling
Data Hazards in ALU Instructions
Load-Use Data Hazard

Code Scheduling

Chapter 4 — The Processor — 42

Data Hazards in ALU Instructions

Consider this sequence:

sub , X1,x3
and x12,x”,x5
or x13,x6,

add x14,x”,

sd x15,100(x2)

There are multiple true data dependencies, read-after-
write (RAW), on register x2.

We can resolve hazards with stalls or forwarding.

Chapter 4 — The Processor — 43

Assume no forwarding (except through the Register File) and
hazards are solved by stalls

sub x2, x1,x3 F' D E M

and x12,x2,x5 F

or x13,Xx6,x/

add x14,x2,x?

SO x15,100(x2)

Chapter 4 — The Processor — 44

Dependencies & Forwarding

-

Time (in clock cycles)

register x2: 10 10 10
Program
execution
order
(in instructions) m
-
sub x2, x1, x3 IM LReg -

and x12, x2, x5 IM — —HReg

or x13, x6, x2

add x14, x2, x2

{ sd x15,100(xX2)

M<

MORGAN KAUFMANN

CC4

10

DM

CC5

10/-20

CC6 CC7 CcC38 CC9
-20 -20 =20 =20
Reg
:_gJ

e
Y
~ |
oM R
— — |
i DM Rng

Chapter 4 — The Processor — 45

Forwarding Paths

A%

Registers

ID/EX EX/MEM MEM/WB
F dA
A Forwarc > ALU .
Data
T ‘ memory
ForwardB

-

Rs1

Rs2 EX/MEM.RegisterRd

Rd > >

MEM/WB .RegisterRd

[Forwarding
unit

Chapter 4 — The Procegssor — 46

With Forwarding

sub xZ2, x1,x3 F' D E M

and x12,x2,x5 =

or x13,Xx6,x’

add x14,x2,x?

SC x15,100(x2)

Chapter 4 — The Processor — 47

Detecting the Need to Forward

Pass register numbers along pipeline
e.g., E.RegisterRs1 = register number for Rs1 sitting in ID/EX pipeline
register

ALU operand register numbers in EX stage are given by
E.RegisterRs1, E.RegisterRs2

Data hazards when

M.RegisterRd = E.RegisterRs1 } v
M.RegisterRd = E.RegisterRs2 pipeline reg
W.RegisterRd = E.RegisterRs1 Fwd from
W.RegisterRd = E.RegisterRs2 F'\)’I'Egl’:/n\’;’?eg

Chapter 4 — The Processor — 48

Detecting the Need to Forward

But only if forwarding instruction will write to a register!
M.RegWrite, W.RegWrite

And only if Rd for that instruction is not x0

M.RegisterRd # 0O,
W.RegisterRd # 0

Chapter 4 — The Processor — 49

Forwarding Conditions

ForwardA = 00
ForwardA = 10
ForwardA = 01
ForwardB = 00
ForwardB = 10
ForwardB = 01

ID/EX
EX/MEM

MEM/WB

ID/EX

EX/MEM

MEM/WB

The first ALU operand comes from the register file.

The first ALU operand is forwarded from the prior ALU
result.

The first ALU operand is forwarded from data memory
or an earlier ALU result.

The second ALU operand comes from the register file.

The second ALU operand is forwarded from the prior
ALU result.

The second ALU operand is forwarded from data
memory or an earlier ALU result.

Chapter 4 — The Processor — 50

Condition for Forwarding from Memory

if (M.RegWrite

and (M.RegisterRd # 0)

and (M.RegisterRd = E.RegisterRs1)) ForwardA =10
if (M.RegWrite

and (M.RegisterRd # 0)

and (M.RegisterRd = E.RegisterRs2)) ForwardB = 10

Chapter 4 — The Processor — 51

Double Data Hazard

Consider the sequence:

ado , X1, x2
ado , X1, X3
add x1,x1,x4

Both hazards occur
Want to use the most recent

Revise MEM hazard condition
Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 52

Condition for Forwarding from Write back

if (W.RegWrite
and (W.RegisterRd # 0)
and not(M.RegWrite and (M.RegisterRd # 0)
and (M.RegisterRd # E.RegisterRs1))
and (W.RegisterRd = E.RegisterRs1)) ForwardA = 01
if (W.RegWrite
and (W.RegisterRd # 0)
and not(M.RegWrite and (M.RegisterRd # 0)
and (M.RegisterRd # E.RegisterRs2))
and (W.RegisterRd = E.RegisterRs2)) ForwardB = 01

Chapter 4 — The Processor — 53

Contents

4.8 Data Hazards: Forwarding versus Stalling

L oad-Use Data Hazard
Code Scheduling

Chapter 4 — The Processor — 54

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program

execution _ 200 400 600 800 1000 1200 1400
order Time

(in instructions) R
Id x1, 0(x2) IF —F5 1D

sub x4, x1, x5

Chapter 4 — The Processor — 55

Load-Use Data Hazard

1d x1, 0(x2) FDEMW
sub x4,x1,x5 F D

Chapter 4 — The Processor — 56

‘ Load-Use Hazard Detection

Check when using instruction is decoded in ID stage

ALU operand register numbers in ID stage are given by
D.RegisterRs1, D.RegisterRs2

Load-use hazard when

E.MemRead and
((E.RegisterRd = D.RegisterRs1) or
(E.RegisterRd = D.RegisterRs2))

If detected, stall and insert bubble

Chapter 4 — The Processor — 57

| Stall Circuit

e

Chapter 4 — The Processor — 58

How to Stall the Pipeline

Force control values in ID/EX register to O
EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1d
Can subsequently forward to EX stage

Chapter 4 — The Processor — 59

Load-Use Data Hazard

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CCH9 CC 10

Program
execution
order

(in instructions) _ _

[y 1
R R
Id x2, 20(x1) IM L_eE: —l:DM —T—[g_gj

bubble Stall inserted
and becomes nop IM — _|::L|:\>_e_g_ iﬁ fg@ / here

iy —|
and x4, x2, x5 IM — —IItR_eg D } —[DM AT—ﬁegj

or X8, x2, x6 IM —'?[R_eg :>~ TDM_ —Ee_d
L — —

| add x9, x4, x2 MH red [pM [—Reg
|- J

/

\

Chapter 4 — The Processor — 60

Datapath with Hazard Detection

Hazard ID/EX.MemRead
»| detection |«
— unit
) __unit)
-~ 3
g ID/EX
m w8 EX/MEM
s »|Control M > \WB MEM/WB
=) R |
% IF“ID EX M WB
o
Y
- - gl
= U >
S g X
B Registers _/
! 3 9 JForwardA > > M
_ B » N ALU u
PC Instruction L = > M
memory R u Data X
g memo
- X ry
ForwardB
IF/ID.RegisterRs1 N >
IF/ID.RegisterRs2 N
IF/ID.RegisterRd _ Rd _ -
Rs1 Forwarding | -‘
Rs2 unit I

M(Chapter 4 — The Processor — 61

MORGAN KAUFMANN

Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid hazards and stalls
Requires knowledge of the pipeline structure

Chapter 4 — The Processor — 62

Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
1d x1, 0(x2) EDEMW
sub x4,x1,x5 F DDEMW
add x7,x5,x6 EF'FDEMMW

Chapter 4 — The Processor — 63

Rearranging to solve Load-Use Data Hazard

1d x1, 0(x2) EDEMW
add x7,x5,x6 F D

sub x4,x1,x5

Chapter 4 — The Processor — 64

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next

Instruction
Ccodefora =b + e; c=b + T;
1d x1, 0(x0) 1d
1d 8(x0) 1d
stall — add X3, xl,@ 1d
sd x3, 24(x0) add
1d (x4)16(x0 sd
T — add x5, xi3(x4) add
sd x5, 32(x0) sd x5, 32(x0)

13 cycles 11 cycles

Chapter 4 — The Processor — 65

Contents

4.9 Control Hazards
4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 66

Contents

4.9 Control Hazards
Branch Hazards
Reducing Branch Delay
Branch Prediction
Dynamic Branch Prediction
Calculating Branch Target

Chapter 4 — The Processor — 67

Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CcCo9

Program
execution
order

(in instructions)

40 beq x1, x0, 16 EI.—I—D

44 and x12, x2, x5

Flush these
> instructions

(Set control
values to 0)

48 or x13, x6, x2

52 add x14, x2, x2

—

72 Id x4, 100(x7)

Chapter 4 — The Processor — 68

Solving branches in the Memory stage

Assume taken branch

1 2 3 10
40 beqg x1,x0,16 F D E
44 and x12,x2,x5 =
48 or x13,x6,x2
52 add x14,x2,x2
72 1d x4,100(x7)

Chapter 4 — The Processor — 69

Reducing Branch Delay

Move hardware to determine outcome to ID stage
Target address adder
Register comparator

Example: branch taken

36: sub x10, x4, x8

40: beq x1, x3, 16 // PC-relative branch
// to 40+16%2=72

44: and x12, x2, x5

48: or x13, x2, X6

52: add x14, x4, x2

56: sub x15, x6, x7

72: i&' x4, 50(x7)

Chapter 4 — The Processor — 70

Example: Branch Taken

| | | 1
and x12, x2, x5 i beq x1, x3, 16 i sub x10, x4, x8 i before<1> E before<2>

l l l I

| | | 1

IF.Flush | } } :

| | | 1

T | | 1

: [/ Hazard ! : !

detection] ! ! |

unit J ! ! !

IDIEX ! !

| 1

M e EX/MEM I

1

L »1Control T u M WB MEM/WB
X i
’ 72 0 EX - M WB
b x4
Regi | S
i |79 ~(M
u
- o XS_ Data X
memory
g 10 "
L
: Forwarding X
: unit i +
|

Clock 3

M(Chapter 4 — The Processor — 71

MORGAN KAUFMANN

Example: Branch Taken

S Id x4, 50(x7) Bubble (nop) beq x1, x3, 16 sub x10, . .. before<1>
.Fius

Hazard
detection |

uni)
it .
IDIIEX

WB
M
& Control u M

X
| IFhD @7 0—~U EX

Shift
left 1

Registers

i

o]
@
=

Forwarding
unit T

Clock 4

M(Chapter 4 — The Processor — 72

MORGAN KAUFMANN

Solving branches in the Decode stage

Assume taken branch

40 beqg x1,x0,16 F D E M
44 and x12,x2,x5 F
48 or x13,x6,x2
52 add x14,x2,x2
72 1d x4,100(x7)

Chapter 4 — The Processor — 73

Branch Prediction

Longer pipelines can’t readily determine branch outcome
early

Stall penalty becomes unacceptable

Predict outcome of branch
Only stall if prediction is wrong

In RISC-V pipeline —
Can predict branches not taken Unit
Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 74

Predict Not Taken

Solving branches in the Decode stage
Assume branch is not taken.

1 2 3 4 5 6 7 8 9|16
beq x1,x0,L F D E M W
12 F
L It

Chapter 4 — The Processor — 75

Predict Not Taken

Solving branches in the Decode stage
Assume branch is taken.

1 2 3 4 5 6 7 8 9|16
beq x1,x0,L F D E M W
12 F
L It

Chapter 4 — The Processor — 76

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior
e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 77

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch penalty is more

significant

Use dynamic prediction
Branch prediction buffer (aka branch history table) jj e
Indexed by recent branch instruction addresses te
Stores outcome (taken/not taken) :'.l-]

To execute a branch
Check table, expect the same outcome
Start fetching from fall-through or target Branch Prediction
If wrong, flush pipeline and flip prediction o

Chapter 4 — The Processor — 78

Branch History Table (BHT)

One-Level Branch Predictor

1-bit predictor

tf1-bit counter

Branch & ddress Taken
LT PPT] Not Taken Taken

kbits% N . predict on Not
bits taken
0

Not Taken

Table size = n x 2K bits

Chapter 4 — The Processor — 79

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

Iteration 997 998 999 0 1

outer: .. Predicion T T T NT T
. Result C C [| C
inner: .. <

beq .., .., 1nner|— T: Taken

NT: Not Taken

beq .., .., outer

C: Correct prediction
I: Incorrect prediction

Mispredict as taken on last iteration of inner loop

Then mispredict as not taken on first iteration of
iInner loop next time around

Chapter 4 — The Processor — 80

2-Bit Predictor

Only change prediction on two successive mispredictions

@ Iteration 997 998 999 0 1

Prediction T T T T T

Not taken
Predict taken RESU"I c C I C C
Taken
Not taken\ [Taken
T: Taken
Not taken NT: Not Taken
Predict not taken . o
C: Correct prediction
Taken

I: Incorrect prediction

N

Chapter 4 — The Processor — 81

Calculating the Branch Target

Even with predictor, still need to calculate the target
address

1-cycle penalty for a taken branch

Branch target buffer
Cache of target addresses

Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can fetch target
iImmediately

Chapter 4 — The Processor — 82

Branch Target Buffer (BTB)

MNo: Instruction is
not predicted to be Branch

branch; proceed normally predicted
laken or
Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

Chapter 4 — The Processor — 83

Contents

4.10 Exceptions
4 .11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 84

Contents

4.10 Exceptions
Exceptions and Interrupts
Handling Exceptions
Exceptions in a Pipeline
Exception Example
Multiple Exceptions
Imprecise Exceptions

Chapter 4 — The Processor — 85

Exceptions and Interrupts

“Unexpected” events requiring change in flow of control
Different ISAs use the terms differently

Exception
Arises within the CPU

e.g., undefined opcode, syscall, ...

Interrupt
From an external I/O controller

Dealing with them without sacrificing performance is hard

Chapter 4 — The Processor — 86

Handling Exceptions

Save PC of offending (or interrupted) instruction
In RISC-V: Supervisor Exception Program Counter (SEPC)

Save indication of the problem
In RISC-V: Supervisor Exception Cause Register (SCAUSE)

64 bits, but most bits unused
Exception code field: 2 for undefined opcode, 12 for hardware malfunction, ...

Jump to handler
Assume at 0000 0000 1C09 0000,

Chapter 4 — The Processor — 87

Handling Exceptions

0000 0000 1C09 0000hex

11

12 Exception
13 Handling
14 Routine
I5

SEPC, SCAUSE

Chapter 4 — The Processor — 88

An Alternate Mechanism

Vectored Interrupts
Handler address determined by the cause

Exception vector address to be added to a vector table

base register:
Undefined opcode 00 0100 0000
Hardware malfunction: 01 1000 0000

two

two

Instructions either
Deal with the interrupt, or
Jump to real handler

Chapter 4 — The Processor — 89

An Alternate Mechanism

11
12
13
14
15

SEPC, SCAUSE

Undefined opcode 00 0100 0000y,
Hardware malfunction: 01 1000 0000,

Chapter 4 — The Processor — 90

Handler Actions

Read cause, and transfer to relevant handler
Determine action required

If restartable

Take corrective action

use SEPC to return to program
Otherwise

Terminate program
Report error using SEPC, SCAUSE, ...

Chapter 4 — The Processor — 91

Exceptions in a Pipeline

Another form of control hazard

Consider malfunction on add in EX stage
add x1, x2, x1
Prevent x1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set SEPC and SCAUSE register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

Chapter 4 — The Processor — 92

Exceptions in a Pipeline

I1 F D EMWNW
add x1,x2,x1 F

I3

14

I5

IHS

Chapter 4 — The Processor — 93

Pipeline with Exceptions

EX.Flush
IF.Flush
ID.Flush
/ Hazard]
detection |« 1!
unit / + ¥ (W
M
1 ID/EX u
—> Y
e 0 EX/MEM
M M]
Control > u > M M ~|WB MEMAVE
B X — SCAUSE x - |
e 0 L, EX l—» SEPC | 0 M W8
}] Shift)
4 left 1 R | m
> ™ u >
—& > i
L 4 > > X
Registers A, R
- ’ > L ALU L
M . o N ' u
1C080000 u PC Instruction | - > u
x memory R M pata |,
| — : r memory ‘
L -
Imm N > >
* Gen >
> —
Forwarding ¢
unit |

M(Chapter 4 — The Processor — 94

MORGAN KAUFMANN

Exception Properties

Restartable exceptions
Pipeline can flush the instruction

Handler executes, then returns to the instruction
Refetched and executed from scratch

PC saved in SEPC register
|dentifies causing instruction

Chapter 4 — The Processor — 95

Exception Example

Exception on N

40 sub x11, x2, x4
44 and x12, x2, x5
48 or x13, x2, X6

50 sub x15, x6, x7
54 1d x16, 100(x7)

Handler

1090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)

Chapter 4 — The Processor — 96

Exception Example

Id x16, 100(x7)

sub x15, x6, x7 add x1, x2, x1

EX_.Flush

orx13, . .. and x12, . ..

IF .Flush

ID.Flush

Hazard
detection |
__ unit /

[\E EX/MEM
»1Control w 0 MEMIWB

| IF/D, U
Data l

memory

1C090000 —

Clock 6

Chapter 4 — The Processor — 97

Exception Example

sd x26, 1000(x0) , bubble (nop) | bubble : bubble ,orx13, ...
: . EX.Flush | !
IF.Flush ; : : !
: ID.Flush : : I
' Hazard : ! !
' detection | : v ! !
___unit / & ! Nn ! |
‘ ID/EX ub—kee .
0 WB| 0 0 X EX/ :EM i
f . M |05 =
Control u M MEMfWB
0»@ E’E —b

rb_

ters
L] 13
1C0S0000 =
Data
memory
Imm _
Gen
13
1 . ﬂ |
|
Clock 7 : ! . orwafdlng ! !
1 ! 1 1
1 | I 1
1 : [1
! | , \

/g\ M(Chapter 4 — The Processor — 98

MORGAN KAUFMANN

Multiple Exceptions

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from earliest instruction
Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle

Out-of-order completion
Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 99

Multiple Exceptions

I1 F D E M
add x1,x2,x1 F

I3 (bad)

I4

I5

IHS

Chapter 4 — The Processor — 100

Imprecise Exceptions

Just stop pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions

Which to complete or flush
May require “manual” completion

Simplifies hardware, but more complex handler software
Not feasible for complex multiple-issue out-of-order pipelines

Chapter 4 — The Processor — 101

Contents

4 .11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 102

Contents

4.11 Parallelism via Instructions
Instruction-Level Parallelism (ILP)
Multiple Issue
Static Multiple Issue
VLIW
Scheduling Static Multiple Issue
Loop Unrolling
Dynamic Multiple Issue
Register Renaming
Speculation
Why Do Dynamic Scheduling

Chapter 4 — The Processor — 103

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS, peak CPIl = 0.25, peak IPC =4
But dependencies reduce this in practice

Chapter 4 — The Processor — 104

Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses instructions to issue each
cycle

Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

Chapter 4 — The Processor — 105

Static Multiple Issue

Compiler groups instructions into “issue packets”
Group of instructions that can be issued on a single cycle
Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 106

VILW

VLIW
(very long instruction word, 1024 bits!)

CaCh 9/ > FetCh ..

memory unit Single multioperation instruction

R L L T T semsssany
. . " ssssi 0w .
........ 1.-----.J-..---.lo...-...ﬂ-. .J---....l........'

EU EU | ----- EU

- MM m

Multi—c;peration Register file
instruction

-

VLIW approach

Chapter 4 — The Processor — 107

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between packets
Varies between [SAs; compiler must know!

Pad with nop if necessary

Chapter 4 — The Processor — 108

RISC-V with Static Dual Issue

Two-issue packets
One ALU/branch instruction

One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM | WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM | WB
n+ 20 Load/store IF ID EX MEM | WB

Chapter 4 — The Processor — 109

RISC-V with Static Dual Issue

(‘\
' _-b_ »- [] » M] —
u >
4 —» .
" N ALU .
>)
- > » M
M Registers u .
1C090000 4+»{ u -» Instruction — - %
b4 memory — - v |
> " > —| Write
\ . - data
Data
[Imm _ ALU o memory —» —
'\ Gen Imm \]
N/ | Gen > N
U Address

/g\ M(Chapter 4 — The Processor — 110

MORGAN KAUFMANN

Hazards in the Dual-Ilssue RISC-V

More instructions executing in parallel
EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , X0, x1
1d x2, 0()

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required

Chapter 4 — The Processor — 111

Hazards in the Dual-Issue RISC-V

add x10, x0, x1 EDE M

nop F DE MW
nop

1d x2, 0(x10)

Chapter 4 — The Processor — 112

Hazards in the Dual-Ilssue RISC-V

Load-use hazard

1d , 0(x20)
add x31, . x21

Still one cycle use latency, but now two instructions
More aggressive scheduling required

Chapter 4 — The Processor — 113

Hazards in the Dual-Ilssue RISC-V

nop F D E M

Id x31, 0x20) F D E M W
nop

nop

add x31,x31,21

Chapter 4 — The Processor — 114

Forwarding in Dual-lssue RISC-V

In addition to forwarding from M and W to E, there are
additional forwarding paths among the two pipelines, e.q.:

From W in memory pipeline to E in ALU pipeline

1d x31, 0(x20)
add x31, x31, x21

Refer to the previous slide

From W in ALU pipeline to M in memory pipeline

add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 115

Forwarding in Dual-Issue RISC-V

From W in ALU pipeline to M in memory pipeline

2 3 4 5 6 7 8 9 160
add x31, x31, x21 F D E M W

nop

nop
sd x31, 0(x20)

Chapter 4 — The Processor — 116

Scheduling Example
Schedule this for dual-issue RISC-V

Loop:

1d ,0(x20) //
add x31, ,x21 //
sd x31,0(x20) //

addi x20,x20,-8 //
b1t x22,x20,Loop //

x31l=array element
add scalar 1n x21
store result
decrement pointer
branch if x22 < x20

ALU/branch

Load/store

Loop:

Chapter 4 — The Processor — 117

Scheduling Example

Schedule this for dual-issue RISC-V

Loop: 1d ,0(x20) // X31=array element
add x31, ,x21 // add scalar 1n x21
sd x31,0(x20) // store result
addi x20,x20,-8 // decrement pointer

blt x22,x20,Lo0p // branch if x22 < x20

ALU/branch Load/store cycle
Loop: 1d ,0(x20) 1

addi x20,x20,-8 2

add x31, ,X21 3

b1t x22,x20,Loop sd x31,8(x20) 4
PC =5/4 =1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 118

Loop Unrolling

Replicate loop body to expose more parallelism
Reduces loop-control overhead

Use different registers per replication
Called “register renaming’

Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register
Aka “name dependence”, write-after-read

Or “output dependence”, write-after-write
Reuse of a register name

Chapter 4 — The Processor — 119

‘ Unrolling Steps

1. Replicate the loop instructions n times
2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions

Chapter 4 — The Processor — 120

Example

Loop:
1d x31,0(x20)
add x31,x31,x21
SC x31,0(x20)
addi x20,x20,-8
blt x22,x20,Lo0p

Chapter 4 — The Processor — 121

1. Replicate the loop instructions 4 times

LOOop:
1c
add

SC

addi
blt

1c
add
SO

addi
b1t

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Loo0p

10
add
SO

addi
blt

10
add
SO

addi
blt

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

Chapter 4 — The Processor — 122

2. Remove unneeded loop overhead

LOOop:
1c
add

SC

addi
blt

1c
add
SO

addi
b1t

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Loo0p

10
add
SO

addi
blt

10
add
SO

addi
blt

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

Chapter 4 — The Processor — 123

2. Remove unneeded loop overhead

Loop:

1d x31,0(x20) 1d x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)

1d x31,0(x20) 1d x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)
addi x20,x20,-8

blt x22,x20,Lo0p

Chapter 4 — The Processor — 124

3. Modify instructions

Loop:

1d x31,0(x20) 1d x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)

1d x31,0(x20) 1d x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)
addi x20,x20,-8

blt x22,x20,Lo0p

Chapter 4 — The Processor — 125

3. Modify instructions

Loop:

1d x31,0(x20) 1d x31,-16(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,0(x20) sd x31,-16(x20)
1d x31,-8(x20) 1d x31,-24(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p

Chapter 4 — The Processor — 126

4. Rename registers

Loop:

1d x31,0(x20) 1d x31,-16(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,0(x20) sd x31,-16(x20)
1d x31,-8(x20) 1d x31,-24(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p

Chapter 4 — The Processor — 127

4. Rename registers

Loop:

1d x28,0(x20) 1d x30,-16(x20)
add x28,x28,x21 add x30,x30,x21
Sd x28,0(x20) sd x30,-16(x20)
1d x29,-8(x20) 1d x31,-24(x20)
add x29,x29,x21 add x31,x31,x21
sd x29,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p

Chapter 4 — The Processor — 128

5. Schedule instructions

1d x28,0(x20)

add x28 , x28 , x21 — ALU/branch Load/store cyclle
sd x28,0(x20) : 2
1d x29,-8(x20) 2
add x29,x29,x21 :
sd x29,-8(x20) :
1d x30,-16(x20) 6
add x30,x30,x21 :
sd x30,-16(x20) 8

1d x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
add1 x20,x20,-32
blt x22,x20,Lo0p

Chapter 4 — The Processor — 129

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi x20,x20,-32 1d , 0(x20) 1
1d x29, 24(x20) 2
add : ,X21 1d x30, 16(x20) 3
add x29,x29,x21 1d x31, 8(x20) 4
add x30,x30,x21 sd , 32(x20) 5
add x31,x31,x21 sd x29, 24(x20) 6
sd x30, 16(x20) 7
b1t x22,x20,Loop sd x31, 8(x20) 8
PC=14/8=1.75

Closer to 2, but at cost of registers and code size

Chapter 4 — The Processor — 130

Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ... each cycle
Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU

Chapter 4 — The Processor — 131

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out of order to avoid

stalls

But commit result to registers in order
Example

1d ,20(x21)

add x1, , X2

sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for Id

Chapter 4 — The Processor — 132

Dynamically Scheduled CPU

=
A

Instruction fetch
and decode unit

In-order issue

l

Y

Y

Y

—

Reservation | | Reservation Reservation || Reservation| <
station station station station
Functional Floating Load-
: Integer Integer .
units point store
— Commit In-order commit
Reorders buffer for unit

register writes

NI<

MORGAN KAUFMANN

Can supply
operands for
issued instructions

Preserves
dependencies

Hold pending
operands

Results also sent
to any waiting
reservation stations

Chapter 4 — The Processor — 133

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (1Q).

I: Issue from IQ to reservation stations (RS), reading ready operands
from register file (RF).

E: Execute when functional unit (FU) is free and instr. in RS has ready
operands.

W: Write result from FU through common data bus (CDB) to reorder
buffer (ROB) and RS.

C. Commit results in order from ROB to RF and memory.
Loads have FIAMWC, stores have FIAC. A: Address calculation

Chapter 4 — The Processor — 134

Single-issue Example

1d x31,20(x21)

add x1,x31,x2

sub x23,x23,x3

andi x5,x23,20

Chapter 4 — The Processor — 135

Register Renaming

Reservation stations and reorder buffer effectively provide
register renaming

On instruction issue to reservation station

If operand is available in register file or reorder buffer
Copied to reservation station
No longer required in the register; can be overwritten

If operand is not yet available

It will be provided to the reservation station by a function unit
Register update may not be required

Chapter 4 — The Processor — 136

Examples

Assume superscalar processor of degree 3

Name dependence (WAR)

mul x1,x2,x3
add x4,x1,x5
1d x5,16(x21)

Output dependence (WAW)

mul x1,x2,x3
add x4,x1,x5
1d x1,16(x21)

Chapter 4 — The Processor — 137

Triple Issue: Name dependence (WAR)

Assume multiplication latency is 3 cycles

1 2 3 45 6 7 8 9 10

mul x1,x2,x3

add x4,x1,x5

1d x5,16(x21)

Chapter 4 — The Processor — 138

Triple Issue: Output Dependence (WAW)

Assume multiplication latency is 3 cycles

1 2 3 45 6 7 8 9 10

mul x1,x2,x3

add x4,x1,x5

1d x1,16(x21)

Chapter 4 — The Processor — 139

Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples
Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated

Chapter 4 — The Processor — 140

Compiler/Hardware Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect guess
Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed
Flush buffers on incorrect speculation

Chapter 4 — The Processor — 141

Branch Speculation

Predict branch and continue issuing
Don’t commit until branch outcome determined

Example: Assume a superscalar processor of degree 2
and the branch prediction is not taken.

1d x1,0(x20)

beq x1,x2,Skip

I3

T4

Chapter 4 — The Processor — 142

Example: Assume a superscalar processor of degree 2 and
the branch prediction is not taken. (Correct prediction)

1234567389060

ld x1,0(x20) F I
beq x1,x2,Skip F I
13 F I
14 F I

Skip:

Chapter 4 — The Processor — 143

Example: Assume a superscalar processor of degree 2 and
the branch prediction is not taken. (Incorrect prediction)

1234567389060

ld x1,0(x20) F I
beq x1,x2,Skip F I
13 F I
14 F I

Skip:

Chapter 4 — The Processor — 144

Load Speculation

Avoid load and cache miss delay
Load before completing outstanding stores
Predict the effective address or loaded value
Bypass stored values to load unit

Don’t commit load until speculation cleared

Example: Superscalar of degree 3.

1o x1,0(x20)
SC x2,0(x1)
Tc x3,0(x21)

Chapter 4 — The Processor — 145

Example: Load speculation. Assume a superscalar processor of degree 3.
Predict the second load does not depend on the store. (Correct prediction)

345678960

sd x2,0(x1)

1 2
ld x1,0(x20) F I
F I
ld x3,0(x21) F I

Chapter 4 — The Processor — 146

Example: Load speculation. Assume a superscalar processor of degree 3.
Predict the second load does not depend on the store. (Incorrect prediction)

345678960

sd x2,0(x1)

1 2
ld x1,0(x20) F I
F I
ld x3,0(x21) F I

Chapter 4 — The Processor — 147

Speculation and Exceptions

What if exception occurs on a speculatively executed
instruction?

e.g., speculative load before null-pointer check

Static speculation
Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction completion (which may
not occur)

Chapter 4 — The Processor — 148

Exceptions Examples

Assume superscalar processor of degree 3 with 2 address
calculation units

E1: Predict branch as not take, but resolve to taken. The
1d has exception in M.

123456789260
beq x1,x2,L1 F I
ld x5,16(x21) F I

Chapter 4 — The Processor — 149

Exceptions Examples

Assume superscalar processor of degree 3 with 2 address
calculation units

E2: Assume the first sd has exception in C.

12345678920
ld x1,0(x20) F I
sd x1,0(x21) F I
sd x2,16(x21) F I

Chapter 4 — The Processor — 150

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?
Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

Chapter 4 — The Processor — 151

Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate
e.g., pointer aliasing
Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

Chapter 4 — The Processor — 152

Power Efficiency

Complexity of dynamic scheduling and speculations
requires power

Multiple simpler cores may be better

Microbrocessor Vear Clock Pipeline Issue Out-of-Order/ Cores/ Power
P Rate Stages Width Speculation Chip

Intel Core i9 Skylake
Intel Ice Lake

Intel 486 1989 25 MHz 1
Intel Pentium 1993 66 MHz 5 2 No 1 10W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103W
Intel Core 2006 3000 MHz 14 4 Yes 2 75W
Intel Core i7 Nehalem 2008 3600 MHz 14 4 Yes 2-4 87TW
Intel Core Westmere 2010 3730 MHz 14 4 Yes 6 130W
Intel Core i7 lvy Bridge 2012 3400 MHz 14 4 Yes 6 130W
Intel Core Broadwell 2014 3700 MHz 14 4 Yes 10 140W
2016 3100 MHz 14 4 Yes 14 165W
2018 4200 MHz 14 4 Yes 16 185W

sor — 153

Contents

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A53

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 154

MORGAN KAUFMANN

Cortex A53 and Intel 17

Market
Thermal design power

Clock rate

Cores/Chip

Floating point?

Multiple issue?

Peak instructions/clock cycle
Pipeline stages

Pipeline schedule

Branch prediction

18t level caches/core

2"d |evel caches/core

3" level caches (shared)

Personal Mobile Device

100 milliwatts (1 core @ 1 GHz)

1.3 GHz
4 (configurable)
Yes
Dynamic
2
8
Static in-order
Hybrid
16-64 KiB |, 16-64 KiB D
128-2048 KiB
(platform dependent)

Server, cloud
130 Watts

3.4 GHz
4
Yes
Dynamic
4
14
Dynamic out-of-order with speculation
Multi-level
32 KiB I, 32 KiB D
256 KiB (per core)
8 MB

Chapter 4 — The Processor — 155

ARM Cortex-A53 Pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- - ALU pipe 0 >
Integer
AGU |« | Register |—
+ : file R ALU pipe 1 >
TLB > Hybrid
. Predictor
| .| Instruction Ly MAC pipe N
Cache : | Writeback
Indirect
> Predictor —
- Divide pipe >
Issue . Load pipe »
L Store pipe >
Instruction Decode Floating Point execute
13-Entry . .
L, Early » Instruction |—s Main .| Late Register
Decode Queue Decode Decode file ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5

Chapter 4 — The Processor — 156

ARM Cortex-A53 Performance

10.00
I Memory hierarchy stalls
9.00 —— Pipeline stalls 556
M I|deal CPI
8.00
7.00
Avg CPI = 1.36
6.00
1.36 + 1.3 GHz =1.05 ns
5.00
4.00
3.37
3.00
2.14
2.00 1.75 1.76 l
1.33 1.39
104 107 117 122 . .
100 %Y L e wm == W —
hmmer | h264ref IIibquemtumI pv.erlbv.enc:hI sjeng | bzip2 | gobmk I::(;alancbmkI gcc | astar I-::'mnetppI mcf

Chapter 4 — The Processor — 157

Core i7 Pipeline

inst. TLB
(8-way)

128-Entry | 32 KB Inst. cache (8-way associative) |
/]

t 4

Instruction
fetch
hardware |=

Pre-decode-+macro-op
fusion, fetch buffer

v

Instruction queue

]
Complex Simple Simple Simple
Mi / macro-op macro-op macro-op macro-op
4;!)?12 decoder decoder decoder decoder
——% Y Y '
| 64-Entry micro-op loop stream detect buffer |

| Register alias table and allocator |
Retirement ¥

register file |~ 224-Entry reorder buffer |

'
| 97-Entry reservation station |
1 Y ' ' v '
ALU ALU Load Store Store ALU
shift shift address | |address data shift
| | |
SSE SSE ' t i SSE
shuffle shuffle Memory order buffer

shuffle

ALU ALU (72 load; 56 stores pending) ALU

| I [
128-bit 128-bit

128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load

[[

FDIV
|

\

32-KB dual-ported data
cache (8-way associative)

Y
256 KB unified 12
cache (4-way)

v 4
Uncore arbiter (handles scheduling and
clock/power state differences)

1536-Entry unified |~ | 64-Entry data TLB | |
L2 TLB (12-way) [—|(4-way associative)

8 MB all core shared and inclusive L3
cache (16-way associative) D

2 MK

MORGAN KAUFMANN

Chapter 4 — The Processor — 158

Core i7 Performance

Avg CPI = 0.64
0.64 + 3.4 GHz = 0.19 ns

M
I
1

The i7 is five times faster. But uses 200x as much power!

1.44
1.37

Cycles per instruction
o
|
I

=5
]
|

0.71 0.76

0.68
0.54 0.60
05| I 042 947 4y 0.38
0 q, - I -
& <& &

Chapter 4 — The Processor — 159

Core i7 Performance

Brnach misprediction rate

10% —
8.2%
8% —+
Q,
60_{"0 1 5.? .",D 4 80!,
4.2% i
4% 3.0%
2.3%
Q,
2% - 1.9% 1.5%
0.8% 0.9% 0.7%
0.3%)
0% N N . [
? Qv © \ & & S & Q S) *
& ~o">Q S 6°® rﬁ)bi\ & .@ﬁ'\@ < 0‘5'& \Qd‘\o 5 &
N < +

Chapter 4 — The Processor — 160

Contents

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 161

nnnnnnnnnnnnnn

Fallacies

Pipelining is easy (!)
The basic idea is easy
The devil is in the details
e.g., detecting data hazards
Pipelining is independent of technology
So why haven’t we always done pipelining?
More transistors make more advanced techniques feasible

Pipeline-related ISA design needs to take account of technology
trends

e.g., predicated instructions

Chapter 4 — The Processor — 162

Pitfalls

Poor ISA design can make pipelining harder

e.g., complex instruction sets (VAX, |A-32)
Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.d., delayed branches
Advanced pipelines have long delay slots

Chapter 4 — The Processor — 163

Contents

4.6 An Overview of Pipelining

4.7 Pipelined Datapath and Control (Review)
4.8 Data Hazards: Forwarding versus Stalling
4.9 Control Hazards

4.10 Exceptions
4 .11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM
Cortex-A33

4.15 Fallacies and Pitfalls
4.16 Concluding Remarks

Chapter 4 — The Processor — 164

Concluding Remarks

Pipelining improves instruction throughput using
parallelism

More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control
Multiple issue and dynamic scheduling (ILP)

Dependencies limit achievable parallelism
Complexity leads to the power wall

Chapter 4 — The Processor — 165

	Slide 1: Chapter 4
	Slide 2: Single-Cycle RISC-V Processor Implementation
	Slide 3: Contents
	Slide 4: Contents
	Slide 5: Pipelining Analogy
	Slide 6: RISC-V Pipeline
	Slide 7: Pipeline Performance
	Slide 8: Pipeline Performance
	Slide 9: Pipeline Speedup
	Slide 10: Pipelining and ISA Design
	Slide 11: Pipeline Hazards
	Slide 12: Structural Hazards
	Slide 13: Structural Hazards
	Slide 14: Pipeline Hazards
	Slide 15: Data Hazards
	Slide 16: Pipeline Hazards
	Slide 17: Control Hazards
	Slide 18: Pipeline Summary
	Slide 19: Contents
	Slide 20: Contents
	Slide 21: Five-Stage Pipeline
	Slide 22: Pipeline registers
	Slide 23: Pipeline Operation
	Slide 24: IF for Load, Store, …
	Slide 25: ID for Load, Store, …
	Slide 26: EX for Load
	Slide 27: MEM for Load
	Slide 28: WB for Load
	Slide 29: Corrected Datapath for Load
	Slide 30: EX for Store
	Slide 31: MEM for Store
	Slide 32: WB for Store
	Slide 33: Pipeline Diagrams
	Slide 34: Single-Cycle Pipeline Diagram
	Slide 35: Multi-Cycle Pipeline Diagram
	Slide 36: Multi-Cycle Pipeline Diagram
	Slide 37: Multi-Cycle Pipeline Diagram
	Slide 38: Pipelined Control (Simplified)
	Slide 39: Pipelined Control
	Slide 40: Pipelined Control
	Slide 41: Contents
	Slide 42: Contents
	Slide 43: Data Hazards in ALU Instructions
	Slide 44: Assume no forwarding (except through the Register File) and hazards are solved by stalls
	Slide 45: Dependencies & Forwarding
	Slide 46: Forwarding Paths
	Slide 47: With Forwarding
	Slide 48: Detecting the Need to Forward
	Slide 49: Detecting the Need to Forward
	Slide 50: Forwarding Conditions
	Slide 51: Condition for Forwarding from Memory
	Slide 52: Double Data Hazard
	Slide 53: Condition for Forwarding from Write back
	Slide 54: Contents
	Slide 55: Load-Use Data Hazard
	Slide 56: Load-Use Data Hazard
	Slide 57: Load-Use Hazard Detection
	Slide 58: Stall Circuit
	Slide 59: How to Stall the Pipeline
	Slide 60: Load-Use Data Hazard
	Slide 61: Datapath with Hazard Detection
	Slide 62: Stalls and Performance
	Slide 63: Rearranging to solve Load-Use Data Hazard
	Slide 64: Rearranging to solve Load-Use Data Hazard
	Slide 65: Code Scheduling to Avoid Stalls
	Slide 66: Contents
	Slide 67: Contents
	Slide 68: Branch Hazards
	Slide 69: Solving branches in the Memory stage
	Slide 70: Reducing Branch Delay
	Slide 71: Example: Branch Taken
	Slide 72: Example: Branch Taken
	Slide 73: Solving branches in the Decode stage
	Slide 74: Branch Prediction
	Slide 75: Predict Not Taken
	Slide 76: Predict Not Taken
	Slide 77: More-Realistic Branch Prediction
	Slide 78: Dynamic Branch Prediction
	Slide 79: Branch History Table (BHT)
	Slide 80: 1-Bit Predictor: Shortcoming
	Slide 81: 2-Bit Predictor
	Slide 82: Calculating the Branch Target
	Slide 83: Branch Target Buffer (BTB)
	Slide 84: Contents
	Slide 85: Contents
	Slide 86: Exceptions and Interrupts
	Slide 87: Handling Exceptions
	Slide 88: Handling Exceptions
	Slide 89: An Alternate Mechanism
	Slide 90: An Alternate Mechanism
	Slide 91: Handler Actions
	Slide 92: Exceptions in a Pipeline
	Slide 93: Exceptions in a Pipeline
	Slide 94: Pipeline with Exceptions
	Slide 95: Exception Properties
	Slide 96: Exception Example
	Slide 97: Exception Example
	Slide 98: Exception Example
	Slide 99: Multiple Exceptions
	Slide 100: Multiple Exceptions
	Slide 101: Imprecise Exceptions
	Slide 102: Contents
	Slide 103: Contents
	Slide 104: Instruction-Level Parallelism (ILP)
	Slide 105: Multiple Issue
	Slide 106: Static Multiple Issue
	Slide 107: VILW
	Slide 108: Scheduling Static Multiple Issue
	Slide 109: RISC-V with Static Dual Issue
	Slide 110: RISC-V with Static Dual Issue
	Slide 111: Hazards in the Dual-Issue RISC-V
	Slide 112: Hazards in the Dual-Issue RISC-V
	Slide 113: Hazards in the Dual-Issue RISC-V
	Slide 114: Hazards in the Dual-Issue RISC-V
	Slide 115: Forwarding in Dual-Issue RISC-V
	Slide 116: Forwarding in Dual-Issue RISC-V
	Slide 117: Scheduling Example
	Slide 118: Scheduling Example
	Slide 119: Loop Unrolling
	Slide 120: Unrolling Steps
	Slide 121: Example
	Slide 122: 1. Replicate the loop instructions 4 times
	Slide 123: 2. Remove unneeded loop overhead
	Slide 124: 2. Remove unneeded loop overhead
	Slide 125: 3. Modify instructions
	Slide 126: 3. Modify instructions
	Slide 127: 4. Rename registers
	Slide 128: 4. Rename registers
	Slide 129: 5. Schedule instructions
	Slide 130: Loop Unrolling Example
	Slide 131: Dynamic Multiple Issue
	Slide 132: Dynamic Pipeline Scheduling
	Slide 133: Dynamically Scheduled CPU
	Slide 134: Pipeline Stages
	Slide 135: Single-issue Example
	Slide 136: Register Renaming
	Slide 137: Examples
	Slide 138: Triple Issue: Name dependence (WAR)
	Slide 139: Triple Issue: Output Dependence (WAW)
	Slide 140: Speculation
	Slide 141: Compiler/Hardware Speculation
	Slide 142: Branch Speculation
	Slide 143: Example: Assume a superscalar processor of degree 2 and the branch prediction is not taken. (Correct prediction)
	Slide 144: Example: Assume a superscalar processor of degree 2 and the branch prediction is not taken. (Incorrect prediction)
	Slide 145: Load Speculation
	Slide 146: Example: Load speculation. Assume a superscalar processor of degree 3. Predict the second load does not depend on the store. (Correct prediction)
	Slide 147: Example: Load speculation. Assume a superscalar processor of degree 3. Predict the second load does not depend on the store. (Incorrect prediction)
	Slide 148: Speculation and Exceptions
	Slide 149: Exceptions Examples
	Slide 150: Exceptions Examples
	Slide 151: Why Do Dynamic Scheduling?
	Slide 152: Does Multiple Issue Work?
	Slide 153: Power Efficiency
	Slide 154: Contents
	Slide 155: Cortex A53 and Intel i7
	Slide 156: ARM Cortex-A53 Pipeline
	Slide 157: ARM Cortex-A53 Performance
	Slide 158: Core i7 Pipeline
	Slide 159: Core i7 Performance
	Slide 160: Core i7 Performance
	Slide 161: Contents
	Slide 162: Fallacies
	Slide 163: Pitfalls
	Slide 164: Contents
	Slide 165: Concluding Remarks

