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Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism |mproves performance

6 PM 7 9 11 12 1 2 AM

Time — o |

Task

et 5= B For 4 loads:
) Ole=
: @ l.ﬁ. Speedup
D .%. =8/3.5=23

6 PM 7 8 9 10 11 12 1 2 AM Non-StOp (n_)oo):

Time ‘m | | | | | Speedup

order = 2n/(0.5n+1.5) = 4
= number of stages

« B0
Bl
BCs=(l

. 'gl Chapter 4 — The Processor — 5

o O o)




RISC-V Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register
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Pipeline Performance

Assume time for stages is
100ps for register read or write
200ps for other stages

Single-cycle datapath:

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

fo 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Pipelined datapath time = stages x 200 ps = 1,000 ps
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Pipeline Performance
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Pipeline Speedup

If all stages are balanced
l.e., all take the same time, then

Time between instructions;; qjineq =
Time between instructions
Number of stages

nonpipelined

If not balanced, speedup is less.

Speedup is due to the increased throughput.
Latency (time for each instruction) does not decrease
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Pipelining and ISA Design

RISC-V ISA is designed for pipelining.

All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing
Can calculate address in 3™ stage, access memory in 4t stage
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Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle

1. Structure hazards
When a required resource is busy for another instruction
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Structural Hazards

Conflict for use of a resource

In RISC-V pipeline with a single memory
Load/store requires data access
Instruction fetch would have to stall for that cycle
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Structural Hazards

Solution: Pipelined datapaths require separate
instruction/data memories
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Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle
1. Structure hazards
When a required resource is busy for another instruction

2. Data hazard

Due to data dependance. Need to wait for previous instruction
to complete its data read/write
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Data Hazards

An instruction depends on completion of data access by
a previous instruction

add x19, x0, x1
sub x2, x19, x3
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Time : : , |-
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| | | |
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bubble bubble,) ( bubble bubble,) ( bubble
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Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle
1. Structure hazards
When a required resource is busy for another instruction

2. Data hazard

Due to data dependance. Need to wait for previous instruction
to complete its data read/write

3. Control hazard

Due to jump and branch instructions. Need to wait for the
address of the next instruction to fetch
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Control Hazards

Branch determines flow of control
Fetching next instruction depends on the branch outcome
Need to find whether the branch is taking or not

Need to calculate the branch target address for taken branch
Instruction

Therefore, fetching the next instruction should wait for the
branch instruction result
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Pipeline Summary

Pipelining improves performance by increasing
instruction throughput

Executes multiple instructions in parallel
Each instruction has the same latency

Subject to hazards
Structure, data, control

Instruction set design affects complexity of pipeline
implementation
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‘ Five-Stage Pipeline

1. IF (F): Fetch instruction from the instruction memory
2. ID (D): Decode instruction and read operands

3. EX (E): Execute operation or calculate address

4. MEM (M): Memory access

5. WB (W): Write result to the register
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Pipeline registers

Need registers between stages
To hold information produced in previous cycle
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‘ Pipeline Operation

We’'ll study cycle-by-cycle flow of instructions through the
pipelined datapath.

We'll look at “single-cycle” diagrams for load & store.
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or Load, Store, ...
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ID for Load, Store, ...
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EX for Load
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MEM for Load

| 'd |
| Memory |
IF/ID ID/EX EX/MEM MEM/WB
>Add  (— > >
4 — YAdd Sum|
Shift
left 1
0
M c
u PC Address 2 Read
3 i Read
X 2 register 1 P >
1 w data 1
= Read \ Zero — -
Instruction o register 2 ALU AU Read
memory o ) Registers pead > result > @ Address data [™]

Write data 2 -

register Data

Write memory

data

_ _ | write
o | data
32 imm | 64 >
L - ——
\ i Gen

M<

MORGAN KAUFMANN

Chapter 4 — The Processor — 27

=
A



WB for Load

rite-back
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orrected Datapath for Load
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EX for Store
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MEM for Store
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WB for Store
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Pipeline Diagrams

1. Single-clock-cycle pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used

2. Multi-clock-cycle diagram
Graph of operation over time
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Single-Cycle Pipeline Diagram

State of pipeline in a given cycle
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Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 (oo CCs8 CC9

Program
execution
order

(in instructions) - - —
g 1
Id x10, 40(x1) IM ~|]—ElRleg| —[DM— —Ee_g:
I 1
sub x11, X2, X3 M Reg oM —Reg
- - =
add x12, x3, x4 M FReg[ | [OALU oM —Reg
| -1
Id x13, 48(x1) IM | Reg % -I:DM— —Eeg|
|l 1

[~ i 1
add x14, x5, X6 IM |— —EilReg| SALU -&FH—EQJ
Y — _

Chapter 4 — The Processor — 35




Multi-Cycle Pipeline Diagram

Traditional form

Time (in clock cycles)

Program
execution
order

(in instructions)

Id x10, 40(x1)
sub x11, x2, x3
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Y
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Instruction | Instruction Execution Data Write-back
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Multi-Cycle Pipeline Diagram
Form used in this class

12 3 45 67 8 9
1d  x10,40(x1) FDE MW
sub x11,x2,x3 FDEMMW
add x12,x3,x4 F DE MW
1d x13,48(x1) F D E MW
add x14,x5,x6 FDE MW
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Pipelined Control (Simplified)
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Pipelined Control

Control signals derived from instruction
As In single-cycle implementation
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Pipelined Control
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Data Hazards in ALU Instructions

Consider this sequence:

sub , X1,x3
and x12,x”,x5
or x13,x6,

add x14,x”,

sd x15,100(x2)

There are multiple true data dependencies, read-after-
write (RAW), on register x2.

We can resolve hazards with stalls or forwarding.
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Assume no forwarding (except through the Register File) and
hazards are solved by stalls

sub x2, x1,x3 F' D E M

and x12,x2,x5 F

or x13,Xx6,x/

add x14,x2,x?

SO x15,100(x2)
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Dependencies & Forwarding

-
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Forwarding Paths

A%

Registers

ID/EX EX/MEM MEM/WB
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With Forwarding

sub xZ2, x1,x3 F' D E M

and x12,x2,x5 =

or x13,Xx6,x’

add x14,x2,x?

SC x15,100(x2)
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Detecting the Need to Forward

Pass register numbers along pipeline
e.g., E.RegisterRs1 = register number for Rs1 sitting in ID/EX pipeline
register

ALU operand register numbers in EX stage are given by
E.RegisterRs1, E.RegisterRs2

Data hazards when

M.RegisterRd = E.RegisterRs1 } v
M.RegisterRd = E.RegisterRs2 pipeline reg
W.RegisterRd = E.RegisterRs1 Fwd from
W.RegisterRd = E.RegisterRs2 F'\)’I'Egl’:/n\’;’?eg
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Detecting the Need to Forward

But only if forwarding instruction will write to a register!
M.RegWrite, W.RegWrite

And only if Rd for that instruction is not x0

M.RegisterRd # 0O,
W.RegisterRd # 0
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Forwarding Conditions

ForwardA = 00
ForwardA = 10
ForwardA = 01
ForwardB = 00
ForwardB = 10
ForwardB = 01

ID/EX
EX/MEM

MEM/WB

ID/EX

EX/MEM

MEM/WB

The first ALU operand comes from the register file.

The first ALU operand is forwarded from the prior ALU
result.

The first ALU operand is forwarded from data memory
or an earlier ALU result.

The second ALU operand comes from the register file.

The second ALU operand is forwarded from the prior
ALU result.

The second ALU operand is forwarded from data
memory or an earlier ALU result.
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Condition for Forwarding from Memory

if (M.RegWrite

and (M.RegisterRd # 0)

and (M.RegisterRd = E.RegisterRs1)) ForwardA =10
if (M.RegWrite

and (M.RegisterRd # 0)

and (M.RegisterRd = E.RegisterRs2)) ForwardB = 10
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Double Data Hazard

Consider the sequence:

ado , X1, x2
ado , X1, X3
add x1,x1,x4

Both hazards occur
Want to use the most recent

Revise MEM hazard condition
Only fwd if EX hazard condition isn’t true
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Condition for Forwarding from Write back

if (W.RegWrite
and (W.RegisterRd # 0)
and not(M.RegWrite and (M.RegisterRd # 0)
and (M.RegisterRd # E.RegisterRs1))
and (W.RegisterRd = E.RegisterRs1)) ForwardA = 01
if (W.RegWrite
and (W.RegisterRd # 0)
and not(M.RegWrite and (M.RegisterRd # 0)
and (M.RegisterRd # E.RegisterRs2))
and (W.RegisterRd = E.RegisterRs2)) ForwardB = 01
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Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program

execution _ 200 400 600 800 1000 1200 1400
order Time . . . . .

(in instructions) R
Id x1, 0(x2) IF —F5 1D

sub x4, x1, x5
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Load-Use Data Hazard

1d x1, 0(x2) FDEMW
sub x4,x1,x5 F D
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‘ Load-Use Hazard Detection

Check when using instruction is decoded in ID stage

ALU operand register numbers in ID stage are given by
D.RegisterRs1, D.RegisterRs2

Load-use hazard when

E.MemRead and
((E.RegisterRd = D.RegisterRs1) or
(E.RegisterRd = D.RegisterRs2))

If detected, stall and insert bubble
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| Stall Circuit

e
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How to Stall the Pipeline

Force control values in ID/EX register to O
EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1d
Can subsequently forward to EX stage
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Load-Use Data Hazard
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Datapath with Hazard Detection
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Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid hazards and stalls
Requires knowledge of the pipeline structure
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Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
1d x1, 0(x2) EDEMW
sub x4,x1,x5 F DDEMW
add x7,x5,x6 EF'FDEMMW
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Rearranging to solve Load-Use Data Hazard

1d x1, 0(x2) EDEMW
add x7,x5,x6 F D

sub x4,x1,x5
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Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next

Instruction
Ccodefora =b + e; c=b + T;
1d x1, 0(x0) 1d
1d 8(x0) 1d
stall — add X3, xl,@ 1d
sd x3, 24(x0) add
1d (x4)16(x0 sd
T — add x5, xi3(x4) add
sd x5, 32(x0) sd x5, 32(x0)

13 cycles 11 cycles
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Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CcCo9

Program
execution
order

(in instructions)

40 beq x1, x0, 16 EI.—I—D

44 and x12, x2, x5

Flush these
> instructions

(Set control
values to 0)

48 or x13, x6, x2

52 add x14, x2, x2

—

72 Id x4, 100(x7)
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Solving branches in the Memory stage

Assume taken branch

1 2 3 10
40 beqg x1,x0,16 F D E
44 and x12,x2,x5 =
48 or x13,x6,x2
52 add x14,x2,x2
72 1d  x4,100(x7)
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Reducing Branch Delay

Move hardware to determine outcome to ID stage
Target address adder
Register comparator

Example: branch taken

36: sub x10, x4, x8

40: beq x1, x3, 16 // PC-relative branch
// to 40+16%2=72

44: and x12, x2, x5

48: or x13, x2, X6

52: add x14, x4, x2

56: sub x15, x6, x7

72: i&' x4, 50(x7)
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Example: Branch Taken

| | | 1
and x12, x2, x5 i beq x1, x3, 16 i sub x10, x4, x8 i before<1> E before<2>

l l l I

| | | 1

IF.Flush | } } :

| | | 1

T | | 1

: [/ Hazard ! : !

detection ] ! ! |

unit J ! ! !

IDIEX ! !

| 1

M e EX/MEM I

1

L »1Control T u M WB MEM/WB
X i
’ 72 0 EX - M WB
b x4
Regi | S
i |79 ~(M
u
- o XS_ Data X
memory
g 10 "
L
: Forwarding X
: unit i +
|

Clock 3
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Example: Branch Taken

S Id x4, 50(x7) Bubble (nop) beq x1, x3, 16 sub x10, . .. before<1>
.Fius

Hazard
detection |

uni )
it .
IDIIEX

WB
M
& Control u M

X
| IFhD @7 0—~U EX

Shift
left 1

Registers

i

o]
@
=

Forwarding
unit T

Clock 4
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Solving branches in the Decode stage

Assume taken branch

40 beqg x1,x0,16 F D E M
44 and x12,x2,x5 F
48 or  x13,x6,x2
52 add x14,x2,x2
72 1d  x4,100(x7)
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Branch Prediction

Longer pipelines can’t readily determine branch outcome
early

Stall penalty becomes unacceptable

Predict outcome of branch
Only stall if prediction is wrong

In RISC-V pipeline —
Can predict branches not taken Unit
Fetch instruction after branch, with no delay
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Predict Not Taken

Solving branches in the Decode stage
Assume branch is not taken.

1 2 3 4 5 6 7 8 9|16
beq x1,x0,L F D E M W
12 F
L It
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Predict Not Taken

Solving branches in the Decode stage
Assume branch is taken.

1 2 3 4 5 6 7 8 9|16
beq x1,x0,L F D E M W
12 F
L It
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More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior
e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history
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Dynamic Branch Prediction

In deeper and superscalar pipelines, branch penalty is more

significant

Use dynamic prediction
Branch prediction buffer (aka branch history table) jj e
Indexed by recent branch instruction addresses te
Stores outcome (taken/not taken) :'.l-]

To execute a branch
Check table, expect the same outcome
Start fetching from fall-through or target Branch Prediction
If wrong, flush pipeline and flip prediction o
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Branch History Table (BHT)

One-Level Branch Predictor

1-bit predictor

tf1-bit counter

Branch & ddress Taken
LT PPT] Not Taken Taken

kbits% N . predict on Not
bits taken
0

Not Taken

Table size = n x 2K bits
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1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

Iteration 997 998 999 0 1

outer: .. Predicion T T T NT T
. Result C C [ | C
inner: .. <

beq .., .., 1nner|— T: Taken

NT: Not Taken

beq .., .., outer

C: Correct prediction
I: Incorrect prediction

Mispredict as taken on last iteration of inner loop

Then mispredict as not taken on first iteration of
iInner loop next time around
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2-Bit Predictor

Only change prediction on two successive mispredictions

@ Iteration 997 998 999 0 1

Prediction T T T T T

Not taken
Predict taken RESU"I c C I C C
Taken
Not taken\ [ Taken
T: Taken
Not taken NT: Not Taken
Predict not taken . o
C: Correct prediction
Taken

I: Incorrect prediction

N
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Calculating the Branch Target

Even with predictor, still need to calculate the target
address

1-cycle penalty for a taken branch

Branch target buffer
Cache of target addresses

Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can fetch target
iImmediately
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Branch Target Buffer (BTB)

MNo: Instruction is
not predicted to be Branch

branch; proceed normally predicted
laken or
Yes: then instruction is branch and predicted untaken

PC should be used as the next PC
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Exceptions and Interrupts

“Unexpected” events requiring change in flow of control
Different ISAs use the terms differently

Exception
Arises within the CPU

e.g., undefined opcode, syscall, ...

Interrupt
From an external I/O controller

Dealing with them without sacrificing performance is hard
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Handling Exceptions

Save PC of offending (or interrupted) instruction
In RISC-V: Supervisor Exception Program Counter (SEPC)

Save indication of the problem
In RISC-V: Supervisor Exception Cause Register (SCAUSE)

64 bits, but most bits unused
Exception code field: 2 for undefined opcode, 12 for hardware malfunction, ...

Jump to handler
Assume at 0000 0000 1C09 0000,
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Handling Exceptions

0000 0000 1C09 0000hex

11

12 Exception
13 Handling
14 Routine
I5

SEPC, SCAUSE
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An Alternate Mechanism

Vectored Interrupts
Handler address determined by the cause

Exception vector address to be added to a vector table

base register:
Undefined opcode 00 0100 0000
Hardware malfunction: 01 1000 0000

two

two

Instructions either
Deal with the interrupt, or
Jump to real handler
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An Alternate Mechanism

11
12
13
14
15

SEPC, SCAUSE

Undefined opcode 00 0100 0000y,
Hardware malfunction: 01 1000 0000,
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Handler Actions

Read cause, and transfer to relevant handler
Determine action required

If restartable

Take corrective action

use SEPC to return to program
Otherwise

Terminate program
Report error using SEPC, SCAUSE, ...
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Exceptions in a Pipeline

Another form of control hazard

Consider malfunction on add in EX stage
add x1, x2, x1
Prevent x1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set SEPC and SCAUSE register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware
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Exceptions in a Pipeline

I1 F D EMWNW
add x1,x2,x1 F

I3

14

I5

IHS
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Pipeline with Exceptions

EX.Flush
IF.Flush
ID.Flush
/ Hazard ]
detection |« 1!
unit / + ¥ (W
M
1 ID/EX u
—> Y
e 0 EX/MEM
M M ]
Control > u > M M ~|WB MEMAVE
B X — SCAUSE x - |
e 0 L, EX l—» SEPC | 0 M W8
} ] Shift )
4 left 1 R | m
> ™ u >
—& > i
L 4 > > X
Registers A, R
- ’ > L ALU L
M . o N ' u
1C080000 u PC Instruction | - > u
x memory R M pata |,
| — : r memory ‘
L -
Imm N > >
* Gen >
> —
Forwarding ¢
unit |
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Exception Properties

Restartable exceptions
Pipeline can flush the instruction

Handler executes, then returns to the instruction
Refetched and executed from scratch

PC saved in SEPC register
|dentifies causing instruction
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Exception Example

Exception on N

40 sub x11, x2, x4
44 and x12, x2, x5
48 or x13, x2, X6

50 sub x15, x6, x7
54 1d x16, 100(x7)

Handler

1090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
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Exception Example

Id x16, 100(x7)

sub x15, x6, x7 add x1, x2, x1

EX_.Flush

orx13, . .. and x12, . ..

IF .Flush

ID.Flush

Hazard
detection |
\__ unit /

[\E EX/MEM
»1Control w 0 MEMIWB

| IF/D, U
Data l

memory

1C090000 —

Clock 6
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Exception Example

sd x26, 1000(x0) , bubble (nop) | bubble : bubble ,orx13, ...
: . EX.Flush | !
IF.Flush ; : : !
: ID.Flush : : I
' Hazard : ! !
' detection | : v ! !
\___unit / & ! Nn ! |
‘ ID/EX ub—kee .
0 WB| 0 0 X EX/ :EM i
f . M |05 =
Control u M MEMfWB
0»@ E’E —b

rb_

ters
L] 13
1C0S0000 =
Data
memory
Imm _
Gen
13
1 . ﬂ |
|
Clock 7 : ! . orwafdlng ! !
1 ! 1 1
1 | I 1
1 : [ 1
! | , \

/g\ M( Chapter 4 — The Processor — 98
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Multiple Exceptions

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from earliest instruction
Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle

Out-of-order completion
Maintaining precise exceptions is difficult!
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Multiple Exceptions

I1 F D E M
add x1,x2,x1 F

I3 (bad)

I4

I5

IHS
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Imprecise Exceptions

Just stop pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions

Which to complete or flush
May require “manual” completion

Simplifies hardware, but more complex handler software
Not feasible for complex multiple-issue out-of-order pipelines
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Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS, peak CPIl = 0.25, peak IPC =4
But dependencies reduce this in practice
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Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses instructions to issue each
cycle

Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime
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Static Multiple Issue

Compiler groups instructions into “issue packets”
Group of instructions that can be issued on a single cycle
Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)
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VILW

VLIW
(very long instruction word, 1024 bits!)

CaCh 9/ ...... > FetCh ..............................................

memory unit Single multioperation instruction

R L L T T semsssany
. . " ssssi 0w .
........ 1.-----.J-..---.lo...-...ﬂ-. .J---....l........'

EU EU | ----- EU

- MM m

Multi—c;peration Register file
instruction

-

VLIW approach
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Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between packets
Varies between [SAs; compiler must know!

Pad with nop if necessary
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RISC-V with Static Dual Issue

Two-issue packets
One ALU/branch instruction

One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM | WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM | WB
n+ 20 Load/store IF ID EX MEM | WB
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RISC-V with Static Dual Issue

(‘\
' _-b_ »- [ ] » M ] —
u >
4 —» .
" N ALU .
> )
- > » M
M Registers u .
1C090000 4+»{ u -» Instruction — - %
b4 memory — - v |
> " > —| Write
\ . - data
Data
[ Imm _ ALU o memory —» —
'\ Gen Imm \]
N/ | Gen > N
U Address

/g\ M( Chapter 4 — The Processor — 110
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Hazards in the Dual-Ilssue RISC-V

More instructions executing in parallel
EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , X0, x1
1d x2, 0( )

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required
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Hazards in the Dual-Issue RISC-V

add x10, x0, x1 EDE M

nop F DE MW
nop

1d x2, 0(x10)
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Hazards in the Dual-Ilssue RISC-V

Load-use hazard

1d , 0(x20)
add x31, . x21

Still one cycle use latency, but now two instructions
More aggressive scheduling required
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Hazards in the Dual-Ilssue RISC-V

nop F D E M

Id x31, 0x20) F D E M W
nop

nop

add x31,x31,21
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Forwarding in Dual-lssue RISC-V

In addition to forwarding from M and W to E, there are
additional forwarding paths among the two pipelines, e.q.:

From W in memory pipeline to E in ALU pipeline

1d x31, 0(x20)
add x31, x31, x21

Refer to the previous slide

From W in ALU pipeline to M in memory pipeline

add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 115



Forwarding in Dual-Issue RISC-V

From W in ALU pipeline to M in memory pipeline

2 3 4 5 6 7 8 9 160
add x31, x31, x21 F D E M W

nop

nop
sd x31, 0(x20)
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Scheduling Example
Schedule this for dual-issue RISC-V

Loop:

1d ,0(x20) //
add x31, ,x21 //
sd x31,0(x20) //

addi x20,x20,-8 //
b1t x22,x20,Loop //

x31l=array element
add scalar 1n x21
store result
decrement pointer
branch if x22 < x20

ALU/branch

Load/store

Loop:
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Scheduling Example

Schedule this for dual-issue RISC-V

Loop: 1d ,0(x20) // X31=array element
add x31, ,x21 // add scalar 1n x21
sd x31,0(x20) // store result
addi x20,x20,-8 // decrement pointer

blt x22,x20,Lo0p // branch if x22 < x20

ALU/branch Load/store cycle
Loop: 1d ,0(x20) 1

addi x20,x20,-8 2

add x31, ,X21 3

b1t x22,x20,Loop sd x31,8(x20) 4
PC =5/4 =1.25 (c.f. peak IPC = 2)
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Loop Unrolling

Replicate loop body to expose more parallelism
Reduces loop-control overhead

Use different registers per replication
Called “register renaming’

Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register
Aka “name dependence”, write-after-read

Or “output dependence”, write-after-write
Reuse of a register name
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‘ Unrolling Steps

1. Replicate the loop instructions n times
2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions
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Example

Loop:
1d x31,0(x20)
add x31,x31,x21
SC x31,0(x20)
addi x20,x20,-8
blt x22,x20,Lo0p

Chapter 4 — The Processor — 121



1. Replicate the loop instructions 4 times

LOOop:
1c
add

SC

addi
blt

1c
add
SO

addi
b1t

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Loo0p

10
add
SO

addi
blt

10
add
SO

addi
blt

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p
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2. Remove unneeded loop overhead

LOOop:
1c
add

SC

addi
blt

1c
add
SO

addi
b1t

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Loo0p

10
add
SO

addi
blt

10
add
SO

addi
blt

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p

x31,0(x20)
x31,x31,x21
x31,0(x20)
x20,x20,-8
x22,x20,Lo0p
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2. Remove unneeded loop overhead

Loop:

1d  x31,0(x20) 1d  x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)

1d  x31,0(x20) 1d  x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)
addi x20,x20,-8

blt x22,x20,Lo0p
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3. Modify instructions

Loop:

1d  x31,0(x20) 1d  x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)

1d  x31,0(x20) 1d  x31,0(x20)

add x31,x31,x21 add x31,x31,x21

sd x31,0(x20) sd x31,0(x20)
addi x20,x20,-8

blt x22,x20,Lo0p

Chapter 4 — The Processor — 125



3. Modify instructions

Loop:

1d  x31,0(x20) 1d  x31,-16(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,0(x20) sd x31,-16(x20)
1d  x31,-8(x20) 1d  x31,-24(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p
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4. Rename registers

Loop:

1d  x31,0(x20) 1d  x31,-16(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,0(x20) sd x31,-16(x20)
1d  x31,-8(x20) 1d  x31,-24(x20)
add x31,x31,x21 add x31,x31,x21
sd x31,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p
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4. Rename registers

Loop:

1d x28,0(x20) 1d x30,-16(x20)
add x28,x28,x21 add x30,x30,x21
Sd x28,0(x20) sd x30,-16(x20)
1d  x29,-8(x20) 1d  x31,-24(x20)
add x29,x29,x21 add x31,x31,x21
sd x29,-8(x20) sd x31,-24(x20)

addi x20,x20,-32

blt x22,x20,Lo0p
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5. Schedule instructions

1d x28,0(x20)

add x28 , x28 , x21 — ALU/branch Load/store cyclle
sd x28,0(x20) : 2
1d x29,-8(x20) 2
add x29,x29,x21 :
sd x29,-8(x20) :
1d x30,-16(x20) 6
add x30,x30,x21 :
sd x30,-16(x20) 8

1d x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
add1 x20,x20,-32
blt x22,x20,Lo0p
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Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi x20,x20,-32 1d , 0(x20) 1
1d x29, 24(x20) 2
add : ,X21 1d x30, 16(x20) 3
add x29,x29,x21 1d x31, 8(x20) 4
add x30,x30,x21 sd , 32(x20) 5
add x31,x31,x21 sd x29, 24(x20) 6
sd x30, 16(x20) 7
b1t x22,x20,Loop sd x31, 8(x20) 8
PC=14/8=1.75

Closer to 2, but at cost of registers and code size
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Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ... each cycle
Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU
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Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out of order to avoid

stalls

But commit result to registers in order
Example

1d ,20(x21)

add x1, , X2

sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for Id
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Dynamically Scheduled CPU

=
A

Instruction fetch
and decode unit

In-order issue

l

Y

Y

Y

—

Reservation | | Reservation Reservation || Reservation| <
station station station station
Functional Floating Load-
: Integer Integer .
units point store
— Commit In-order commit
Reorders buffer for unit

register writes

NI<

MORGAN KAUFMANN

Can supply
operands for
issued instructions

Preserves
dependencies

Hold pending
operands

Results also sent
to any waiting
reservation stations
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Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (1Q).

I: Issue from IQ to reservation stations (RS), reading ready operands
from register file (RF).

E: Execute when functional unit (FU) is free and instr. in RS has ready
operands.

W: Write result from FU through common data bus (CDB) to reorder
buffer (ROB) and RS.

C. Commit results in order from ROB to RF and memory.
Loads have FIAMWC, stores have FIAC. A: Address calculation
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Single-issue Example

1d x31,20(x21)

add x1,x31,x2

sub x23,x23,x3

andi x5,x23,20
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Register Renaming

Reservation stations and reorder buffer effectively provide
register renaming

On instruction issue to reservation station

If operand is available in register file or reorder buffer
Copied to reservation station
No longer required in the register; can be overwritten

If operand is not yet available

It will be provided to the reservation station by a function unit
Register update may not be required
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Examples

Assume superscalar processor of degree 3

Name dependence (WAR)

mul x1,x2,x3
add x4,x1,x5
1d x5,16(x21)

Output dependence (WAW)

mul x1,x2,x3
add x4,x1,x5
1d x1,16(x21)
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Triple Issue: Name dependence (WAR)

Assume multiplication latency is 3 cycles

1 2 3 45 6 7 8 9 10

mul x1,x2,x3

add x4,x1,x5

1d x5,16(x21)
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Triple Issue: Output Dependence (WAW)

Assume multiplication latency is 3 cycles

1 2 3 45 6 7 8 9 10

mul x1,x2,x3

add x4,x1,x5

1d x1,16(x21)
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Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples
Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated
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Compiler/Hardware Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect guess
Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed
Flush buffers on incorrect speculation
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Branch Speculation

Predict branch and continue issuing
Don’t commit until branch outcome determined

Example: Assume a superscalar processor of degree 2
and the branch prediction is not taken.

1d x1,0(x20)

beq x1,x2,Skip

I3

T4
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Example: Assume a superscalar processor of degree 2 and
the branch prediction is not taken. (Correct prediction)

1234567389060

ld x1,0(x20) F I
beq x1,x2,Skip F I
13 F I
14 F I

Skip:
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Example: Assume a superscalar processor of degree 2 and
the branch prediction is not taken. (Incorrect prediction)

1234567389060

ld x1,0(x20) F I
beq x1,x2,Skip F I
13 F I
14 F I

Skip:
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Load Speculation

Avoid load and cache miss delay
Load before completing outstanding stores
Predict the effective address or loaded value
Bypass stored values to load unit

Don’t commit load until speculation cleared

Example: Superscalar of degree 3.

1o x1,0(x20)
SC x2,0(x1)
Tc x3,0(x21)
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Example: Load speculation. Assume a superscalar processor of degree 3.
Predict the second load does not depend on the store. (Correct prediction)

345678960

sd x2,0(x1)

1 2
ld x1,0(x20) F I
F I
ld x3,0(x21) F I

Chapter 4 — The Processor — 146



Example: Load speculation. Assume a superscalar processor of degree 3.
Predict the second load does not depend on the store. (Incorrect prediction)

345678960

sd x2,0(x1)

1 2
ld x1,0(x20) F I
F I
ld x3,0(x21) F I
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Speculation and Exceptions

What if exception occurs on a speculatively executed
instruction?

e.g., speculative load before null-pointer check

Static speculation
Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction completion (which may
not occur)
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Exceptions Examples

Assume superscalar processor of degree 3 with 2 address
calculation units

E1: Predict branch as not take, but resolve to taken. The
1d has exception in M.

123456789260
beq x1,x2,L1 F I
ld x5,16(x21) F I
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Exceptions Examples

Assume superscalar processor of degree 3 with 2 address
calculation units

E2: Assume the first sd has exception in C.

12345678920
ld x1,0(x20) F I
sd x1,0(x21) F I
sd x2,16(x21) F I
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Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?
Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards
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Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate
e.g., pointer aliasing
Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
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Power Efficiency

Complexity of dynamic scheduling and speculations
requires power

Multiple simpler cores may be better

Microbrocessor Vear Clock Pipeline Issue Out-of-Order/ Cores/ Power
P Rate Stages Width Speculation Chip

Intel Core i9 Skylake
Intel Ice Lake

Intel 486 1989 25 MHz 1
Intel Pentium 1993 66 MHz 5 2 No 1 10W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103W
Intel Core 2006 3000 MHz 14 4 Yes 2 75W
Intel Core i7 Nehalem 2008 3600 MHz 14 4 Yes 2-4 87TW
Intel Core Westmere 2010 3730 MHz 14 4 Yes 6 130W
Intel Core i7 lvy Bridge 2012 3400 MHz 14 4 Yes 6 130W
Intel Core Broadwell 2014 3700 MHz 14 4 Yes 10 140W
2016 3100 MHz 14 4 Yes 14 165W
2018 4200 MHz 14 4 Yes 16 185W
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Cortex A53 and Intel 17

Market
Thermal design power

Clock rate

Cores/Chip

Floating point?

Multiple issue?

Peak instructions/clock cycle
Pipeline stages

Pipeline schedule

Branch prediction

18t level caches/core

2"d |evel caches/core

3" level caches (shared)

Personal Mobile Device

100 milliwatts (1 core @ 1 GHz)

1.3 GHz
4 (configurable)
Yes
Dynamic
2
8
Static in-order
Hybrid
16-64 KiB |, 16-64 KiB D
128-2048 KiB
(platform dependent)

Server, cloud
130 Watts

3.4 GHz
4
Yes
Dynamic
4
14
Dynamic out-of-order with speculation
Multi-level
32 KiB I, 32 KiB D
256 KiB (per core)
8 MB
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ARM Cortex-A53 Pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- - ALU pipe 0 >
Integer
AGU |« | Register |—
+ : file R ALU pipe 1 >
TLB > Hybrid
. Predictor
| .| Instruction Ly MAC pipe N
Cache : | Writeback
Indirect
> Predictor —
- Divide pipe >
Issue . Load pipe »
L Store pipe >
Instruction Decode Floating Point execute
13-Entry . .
L, Early » Instruction |—s Main .| Late Register
Decode Queue Decode Decode file ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5
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ARM Cortex-A53 Performance

10.00
I Memory hierarchy stalls
9.00 ——  Pipeline stalls 556
M I|deal CPI
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7.00
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4.00
3.37
3.00
2.14
2.00 1.75 1.76 l
1.33 1.39
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Core i7 Pipeline

inst. TLB
(8-way)

128-Entry | 32 KB Inst. cache (8-way associative) |
/ ]

t 4

Instruction
fetch
hardware |=

Pre-decode-+macro-op
fusion, fetch buffer

v

Instruction queue

]
Complex Simple Simple Simple
Mi / macro-op macro-op macro-op macro-op
4;!)?12 decoder decoder decoder decoder
——% Y Y '
| 64-Entry micro-op loop stream detect buffer |

| Register alias table and allocator |
Retirement ¥

register file |~ 224-Entry reorder buffer |

'
| 97-Entry reservation station |
1 Y ' ' v '
ALU ALU Load Store Store ALU
shift shift address | |address data shift
| | |
SSE SSE ' t i SSE
shuffle shuffle Memory order buffer

shuffle

ALU ALU (72 load; 56 stores pending) ALU

| I [
128-bit 128-bit

128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load

[ [

FDIV
|

\

32-KB dual-ported data
cache (8-way associative)

Y
256 KB unified 12
cache (4-way)

v 4
Uncore arbiter (handles scheduling and
clock/power state differences)

1536-Entry unified |~ | 64-Entry data TLB | |
L2 TLB (12-way) [—|(4-way associative)

8 MB all core shared and inclusive L3
cache (16-way associative) D

2 MK
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Core i7 Performance

Avg CPI = 0.64
0.64 + 3.4 GHz = 0.19 ns

M
I
1

The i7 is five times faster. But uses 200x as much power!

1.44
1.37

Cycles per instruction
o
|
I

=5
]
|

0.71 0.76

0.68
0.54 0.60
05| I 042 947 4y 0.38
0 q, - I -
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Core i7 Performance

Brnach misprediction rate
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Fallacies

Pipelining is easy (!)
The basic idea is easy
The devil is in the details
e.g., detecting data hazards
Pipelining is independent of technology
So why haven’t we always done pipelining?
More transistors make more advanced techniques feasible

Pipeline-related ISA design needs to take account of technology
trends

e.g., predicated instructions
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Pitfalls

Poor ISA design can make pipelining harder

e.g., complex instruction sets (VAX, |A-32)
Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.d., delayed branches
Advanced pipelines have long delay slots
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Concluding Remarks

Pipelining improves instruction throughput using
parallelism

More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control
Multiple issue and dynamic scheduling (ILP)

Dependencies limit achievable parallelism
Complexity leads to the power wall
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