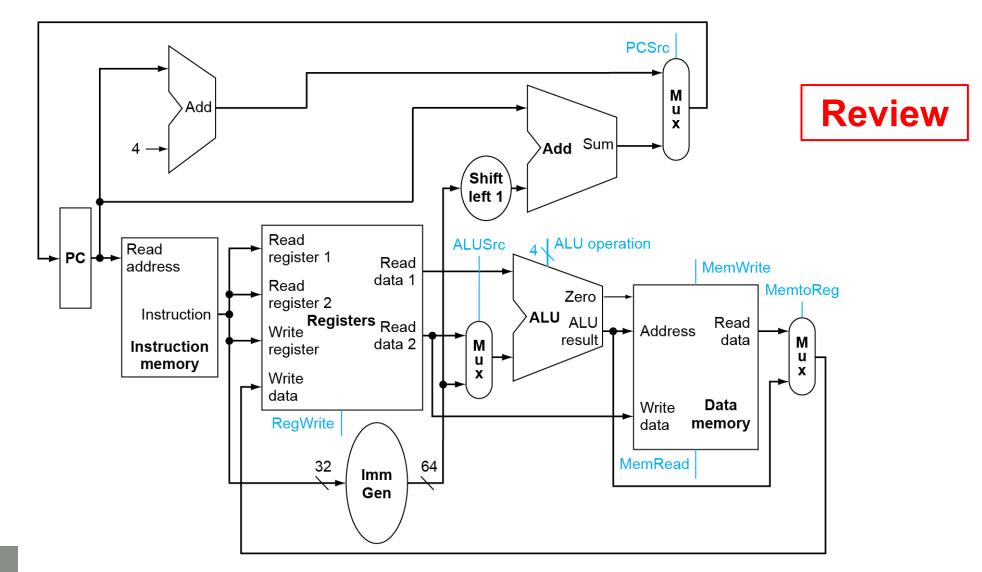


COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface


Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

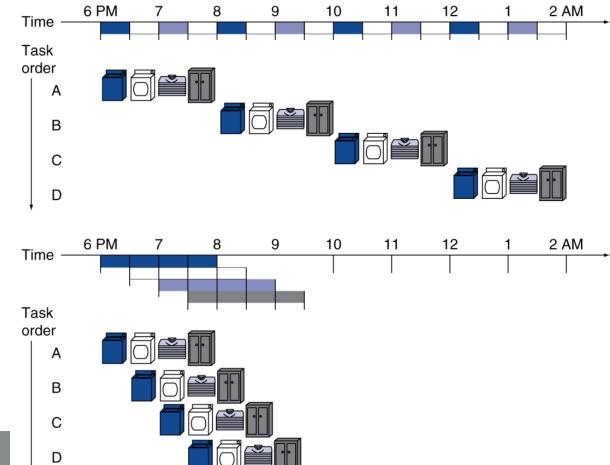
Last updated 15/10/2023

Single-Cycle RISC-V Processor Implementation

Contents

- 4.6 An Overview of Pipelining
- 4.7 Pipelined Datapath and Control
- 4.8 Data Hazards: Forwarding versus Stalling
- 4.9 Control Hazards
- 4.10 Exceptions
- 4.11 Parallelism via Instructions
- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Contents


4.6 An Overview of Pipelining Pipelining Analogy **RISC-V** Pipeline **Pipeline Performance** Pipelining and ISA Design **Pipeline Hazards Pipeline Summary**

Pipelining Analogy

Pipelined laundry: overlapping execution

Parallelism improves performance

For 4 loads:

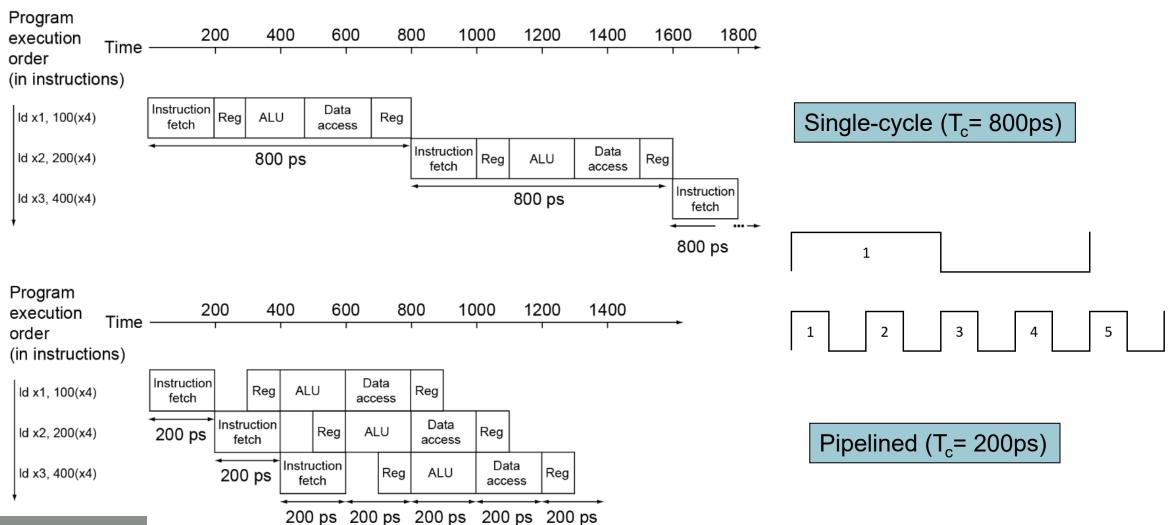
- Speedup= 8/3.5 = 2.3
- Non-stop (n→∞):
 - Speedup
 - = 2n/(0.5n+1.5) ≈ 4
 - = number of stages

RISC-V Pipeline

- Five stages, one step per stage
- 1. IF: Instruction fetch from memory
- 2. ID: Instruction decode & register read
- 3. EX: Execute operation or calculate address
- 4. MEM: Access memory operand
- 5. WB: Write result back to register

Pipeline Performance

Assume time for stages is


- 100ps for register read or write
- 200ps for other stages
- Single-cycle datapath:

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time	
ld	200ps 100		200ps	200ps	100 ps	800ps	
sd	200ps	100 ps	200ps	200ps		700ps	
R-format	200ps	100 ps	200ps		100 ps	600ps	
beq	200ps	100 ps	200ps			500ps	

Pipelined datapath time = stages × 200 ps = 1,000 ps

Pipeline Performance

Pipeline Speedup

- If all stages are balanced
 - i.e., all take the same time, then
 - Time between instructions_{pipelined} =
 Time between instructions_{nonpipelined}
 Number of stages

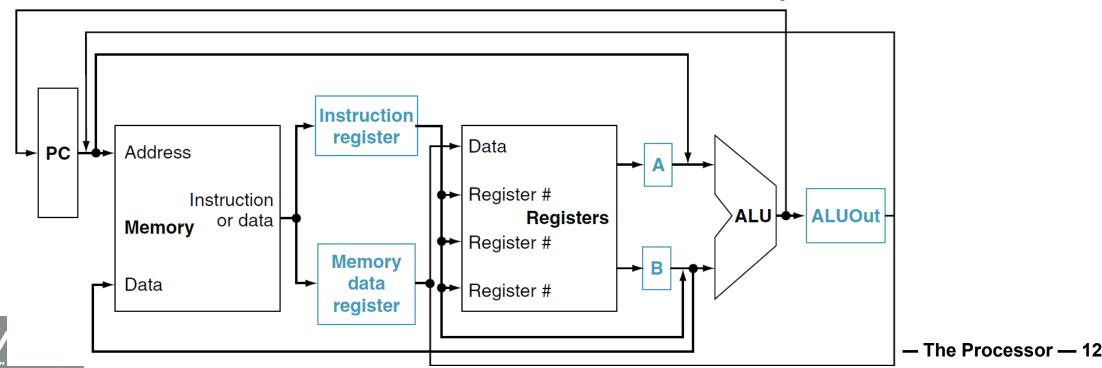
- If not balanced, speedup is less.
- Speedup is due to the increased throughput.
 - Latency (time for each instruction) does not decrease

Pipelining and ISA Design

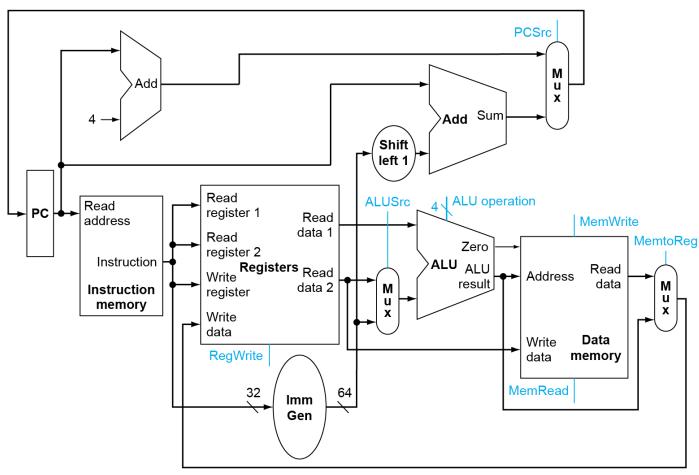
RISC-V ISA is designed for pipelining.

All instructions are 32-bits

- Easier to fetch and decode in one cycle
- c.f. x86: 1- to 17-byte instructions
- Few and regular instruction formats
 - Can decode and read registers in one step
- Load/store addressing
 - Can calculate address in 3rd stage, access memory in 4th stage


Pipeline Hazards

- Situations that prevent starting the next instruction in the next cycle
- 1. Structure hazards
 - When a required resource is busy for another instruction

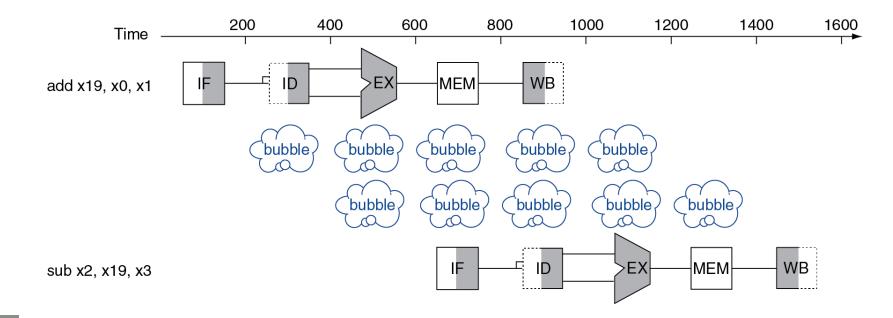

Structural Hazards

- Conflict for use of a resource
- In RISC-V pipeline with a single memory
 - Load/store requires data access
 - Instruction fetch would have to stall for that cycle

Structural Hazards

Solution: Pipelined datapaths require separate instruction/data memories

Pipeline Hazards


- Situations that prevent starting the next instruction in the next cycle
- 1. Structure hazards
 - When a required resource is busy for another instruction
- 2. Data hazard
 - Due to data dependance. Need to wait for previous instruction to complete its data read/write

Data Hazards

 An instruction depends on completion of data access by a previous instruction

add x19, x0, x1
sub x2, x19, x3

Pipeline Hazards

- Situations that prevent starting the next instruction in the next cycle
- 1. Structure hazards
 - When a required resource is busy for another instruction
- 2. Data hazard
 - Due to data dependance. Need to wait for previous instruction to complete its data read/write
- 3. Control hazard
 - Due to jump and branch instructions. Need to wait for the address of the next instruction to fetch

Control Hazards

Branch determines flow of control

- Fetching next instruction depends on the branch outcome
- Need to find whether the branch is taking or not
- Need to calculate the branch target address for taken branch instruction
- Therefore, fetching the next instruction should wait for the branch instruction result

Pipeline Summary

The BIG Picture

- Pipelining improves performance by increasing instruction throughput
 - Executes multiple instructions in parallel
 - Each instruction has the same latency
- Subject to hazards
 - Structure, data, control
- Instruction set design affects complexity of pipeline implementation

Contents

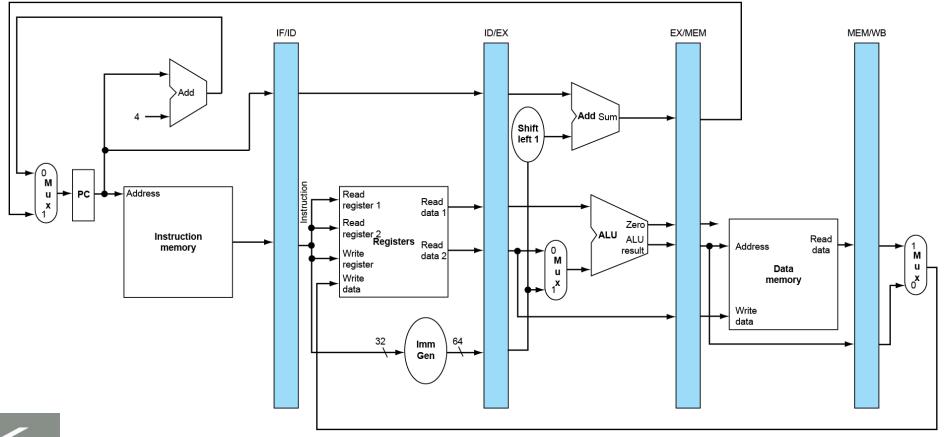
4.6 An Overview of Pipelining

- 4.7 Pipelined Datapath and Control
- 4.8 Data Hazards: Forwarding versus Stalling
- 4.9 Control Hazards
- 4.10 Exceptions
- 4.11 Parallelism via Instructions
- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Contents

4.7 Pipelined Datapath and Control Five-Stage Pipeline
Pipeline Operation
Pipeline Diagrams
Pipeline Control

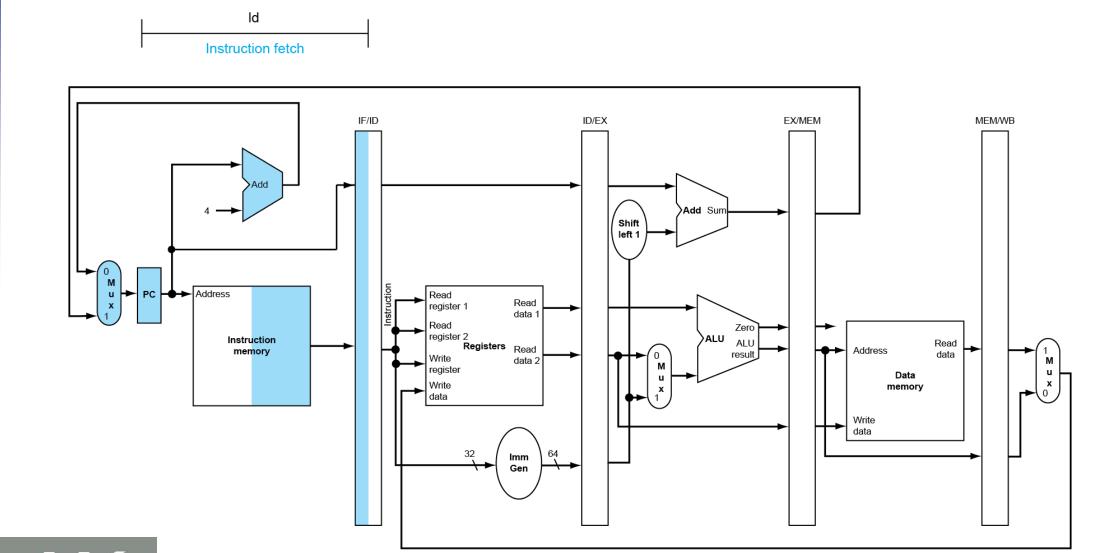
Five-Stage Pipeline


- **1. IF (F)**: Fetch instruction from the instruction memory
- **2. ID (D)**: Decode instruction and read operands
- 3. EX (E): Execute operation or calculate address
- 4. MEM (M): Memory access
- 5. WB (W): Write result to the register

Pipeline registers

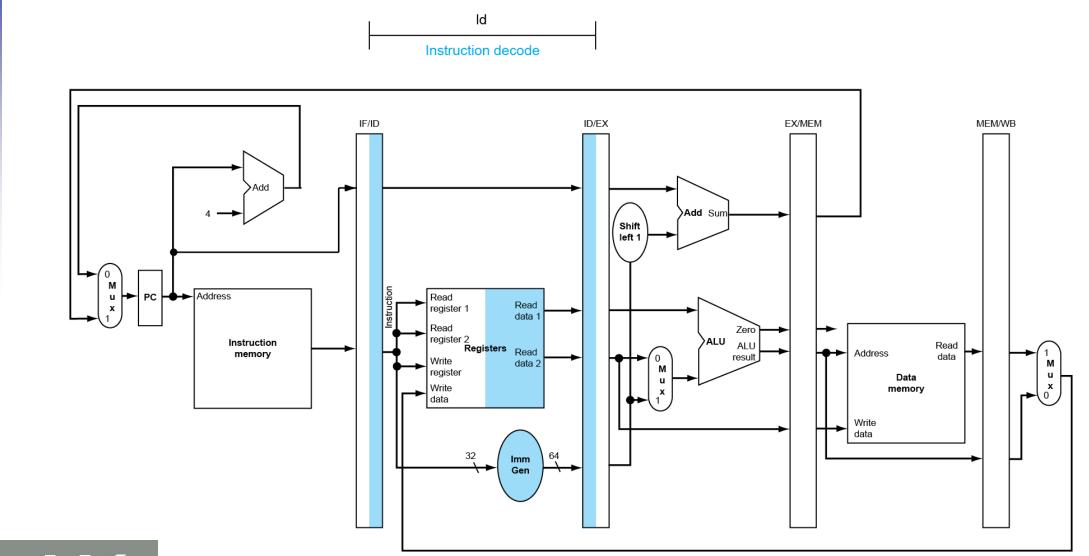
Need registers between stages

To hold information produced in previous cycle

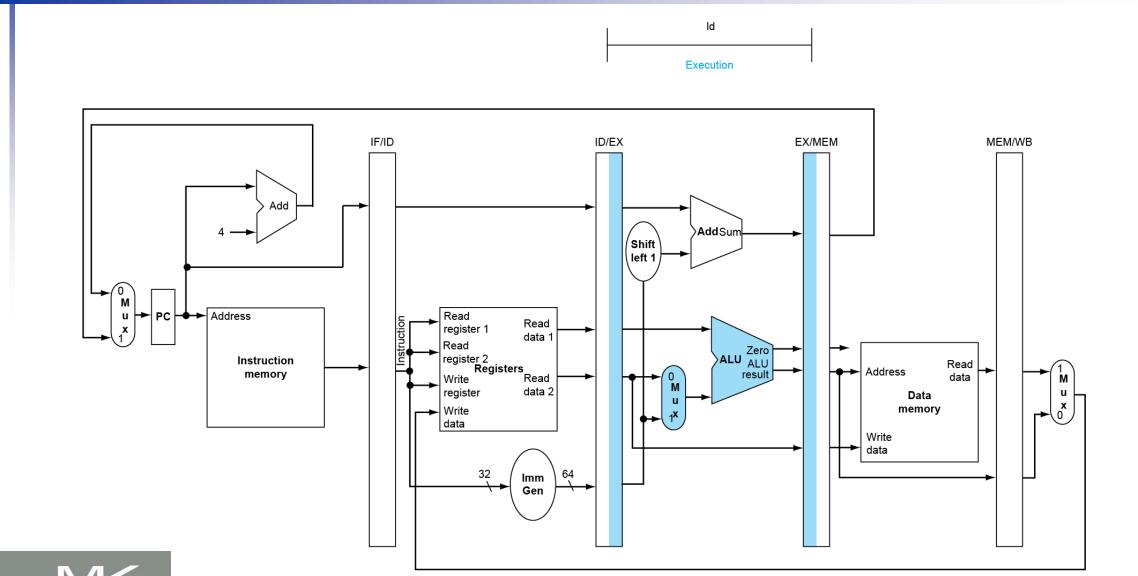


Pipeline Operation

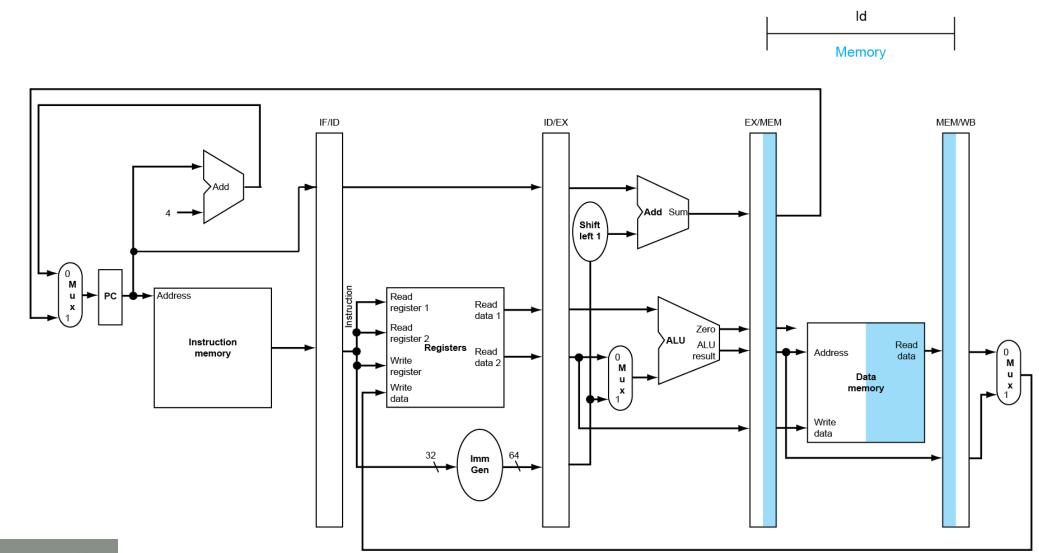
- We'll study cycle-by-cycle flow of instructions through the pipelined datapath.
- We'll look at "single-cycle" diagrams for load & store.



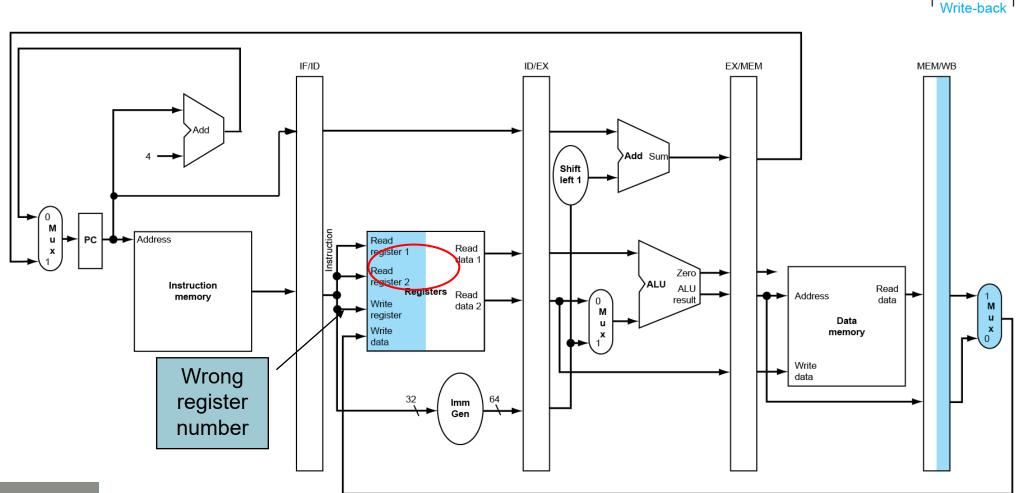
IF for Load, Store, ...



ID for Load, Store, ...

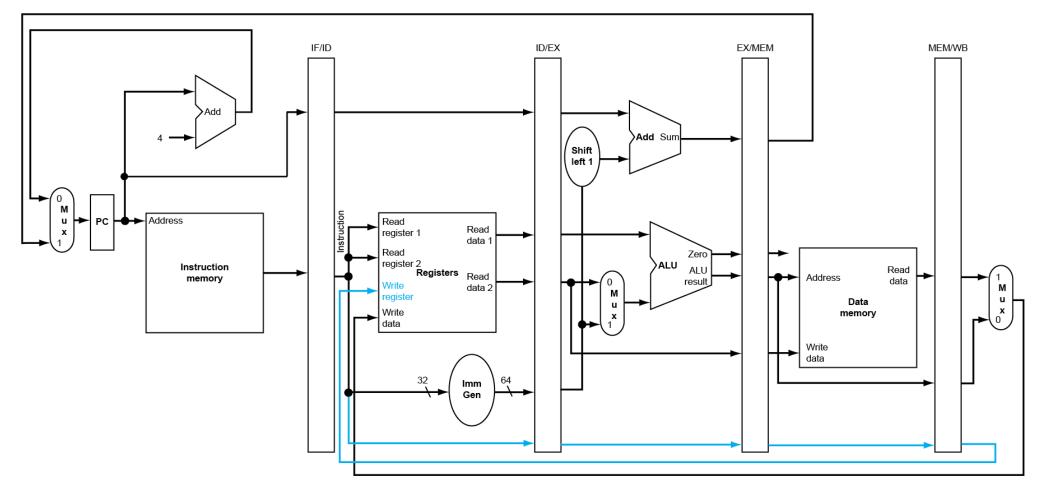


EX for Load

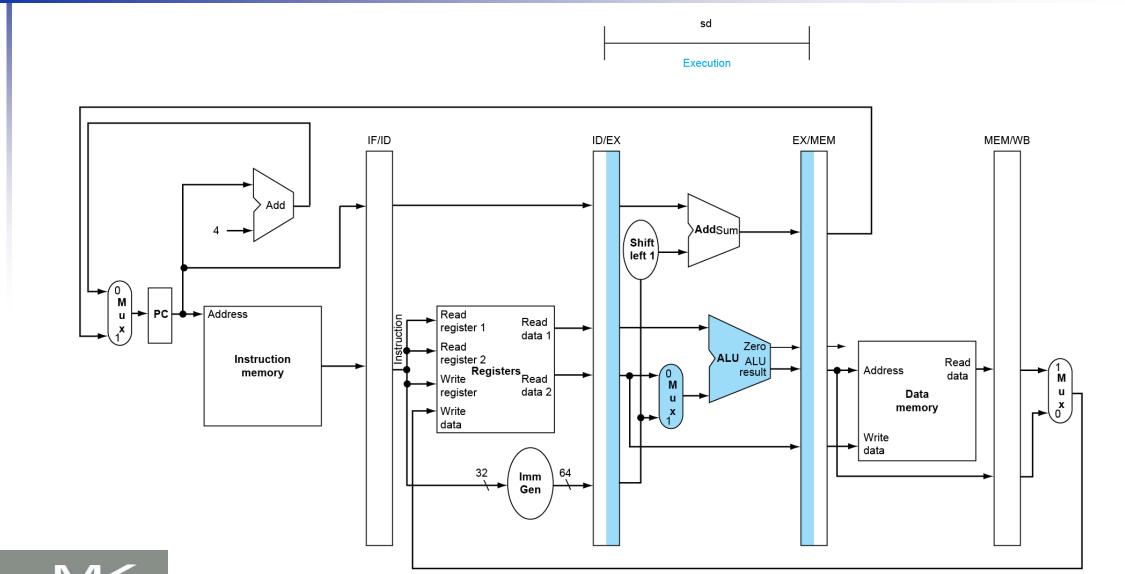

MEM for Load

Chapter 4 — The Processor — 27

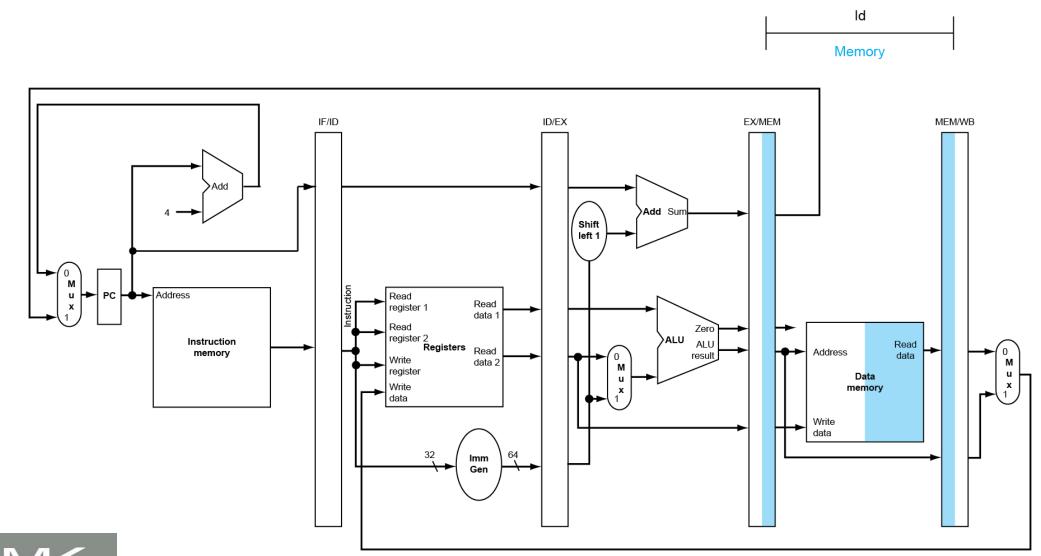
WB for Load

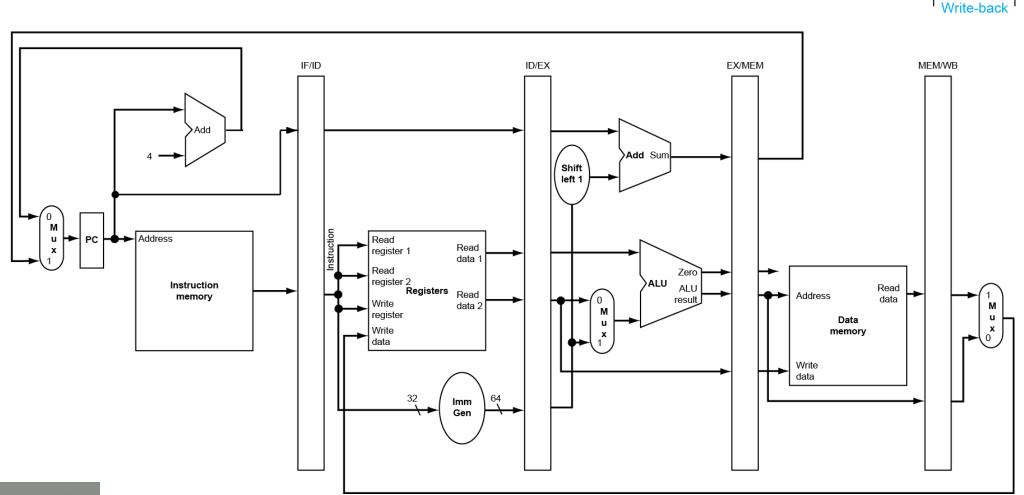


Chapter 4 — The Processor — 28


ld

Corrected Datapath for Load



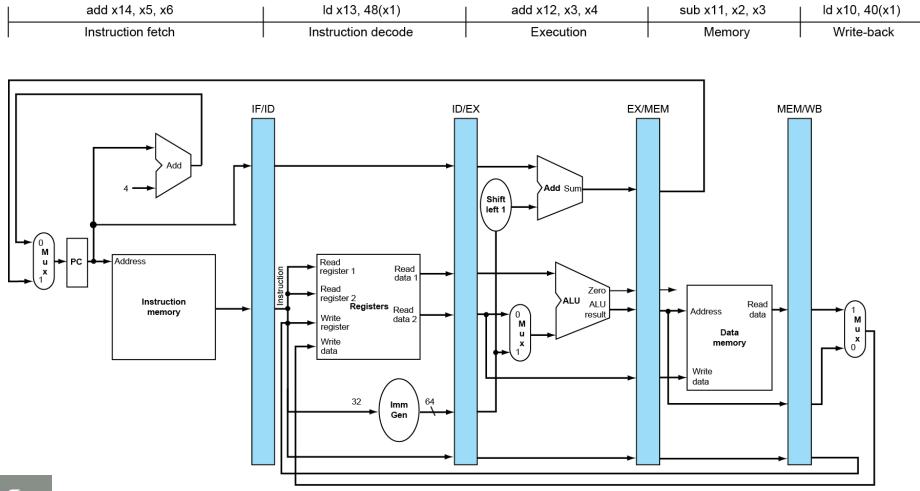

EX for Store

MEM for Store

WB for Store

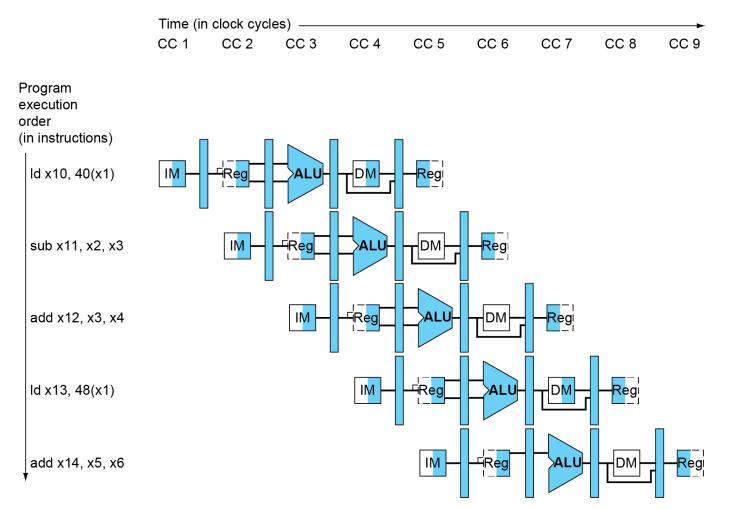
Chapter 4 — The Processor — 32

sd


Pipeline Diagrams

- 1. Single-clock-cycle pipeline diagram
 - Shows pipeline usage in a single cycle
 - Highlight resources used
- 2. Multi-clock-cycle diagram
 - Graph of operation over time

Single-Cycle Pipeline Diagram


State of pipeline in a given cycle

Multi-Cycle Pipeline Diagram

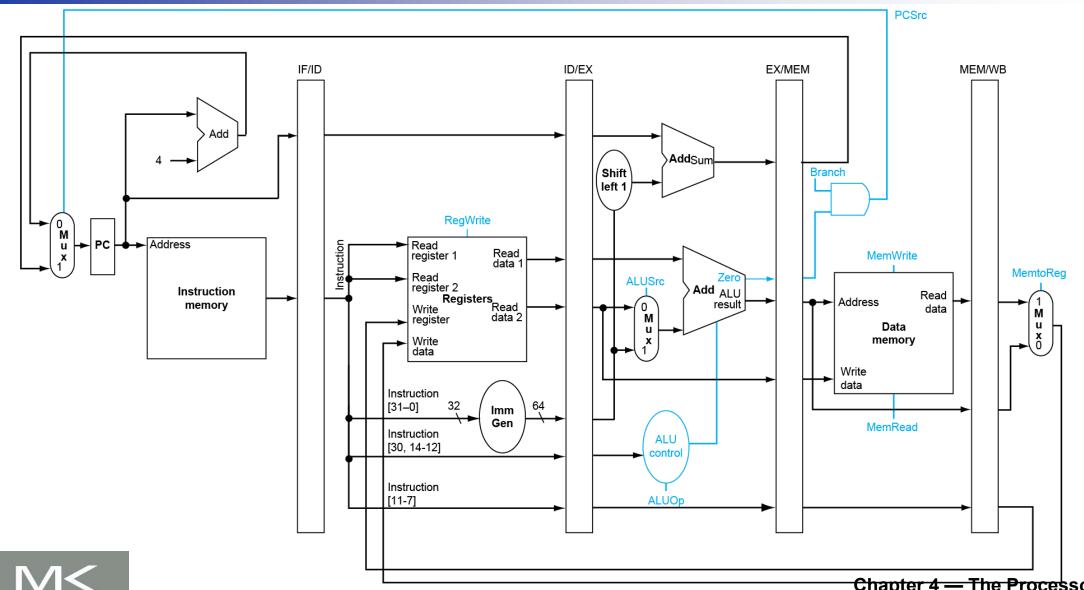
Form showing resource usage

Chapter 4 — The Processor — 35

Multi-Cycle Pipeline Diagram

Traditional form

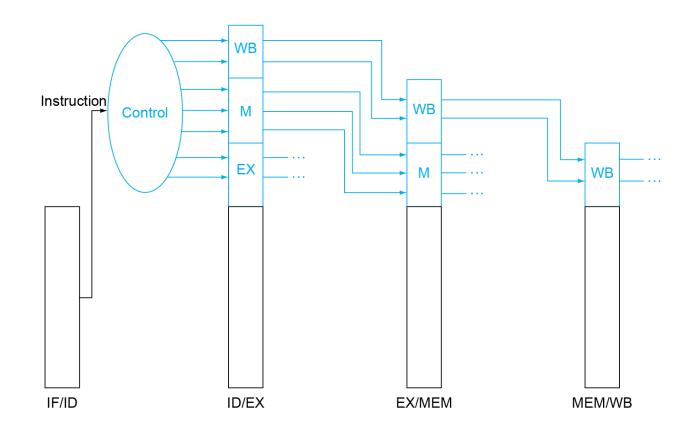
		Time (in	clock cycle	es) ——						
		CC 1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9
e o	rogram xecution rder n instructions)									
	ld x10, 40(x1)	Instruction fetch	Instruction decode	Execution	Data access	Write-back				
	sub x11, x2, x3		Instruction fetch	Instruction decode	Execution	Data access	Write-back			
	add x12, x3, x4			Instruction fetch	Instruction decode	Execution	Data access	Write-back		
	ld x13, 48(x1)				Instruction fetch	Instruction decode	Execution	Data access	Write-back	
	add x14, x5, x6					Instruction fetch	Instruction decode	Execution	Data access	Write-back


Multi-Cycle Pipeline Diagram

Form used in this class

		1	2	3	4	5	6	7	8	9
٦d	x10,40(x1)	F	D	Ε	Μ	W				
sub	x11,x2,x3		F	D	Ε	Μ	W			
add	x12,x3,x4			F	D	Ε	Μ	W		
٦d	x13,48(x1)				F	D	Ε	Μ	W	
add	x14,x5,x6					F	D	E	Μ	W

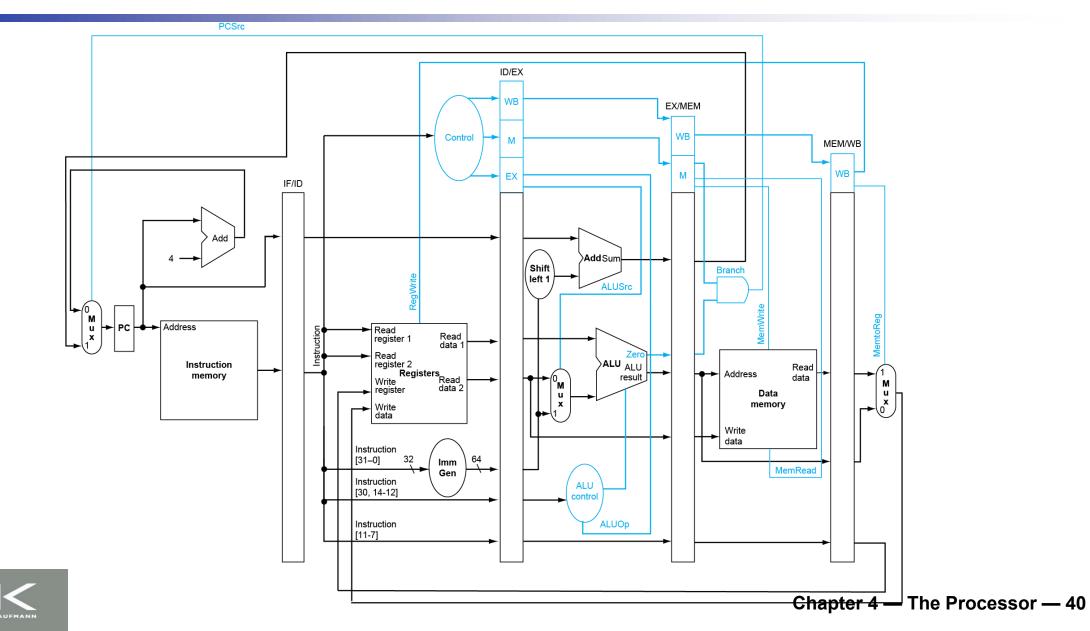
Pipelined Control (Simplified)



Chapter 4 — The Processor — 38

Pipelined Control

Control signals derived from instruction


As in single-cycle implementation

Chapter 4 — The Processor — 39

Pipelined Control

Contents

- 4.6 An Overview of Pipelining4.7 Pipelined Datapath and Control
- 4.8 Data Hazards: Forwarding versus Stalling
- 4.9 Control Hazards
- 4.10 Exceptions
- 4.11 Parallelism via Instructions
- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Contents

4.8 Data Hazards: Forwarding versus Stalling Data Hazards in ALU Instructions Load-Use Data Hazard Code Scheduling

Data Hazards in ALU Instructions

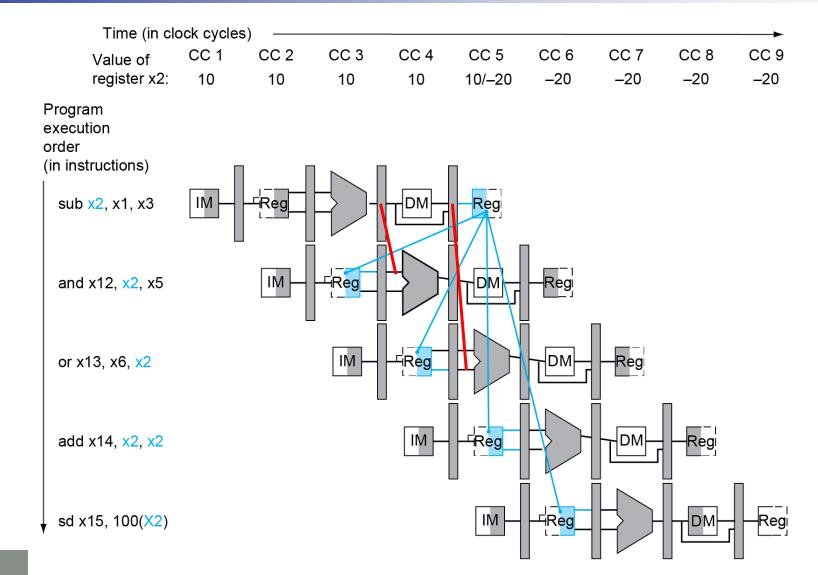
Consider this sequence:

sub x^2 , x^1 , x^3 and x^{12} , x^2 , x^5

- or x13,x6,x2
- add x14, x2, x2
- sd x15,100(x2)

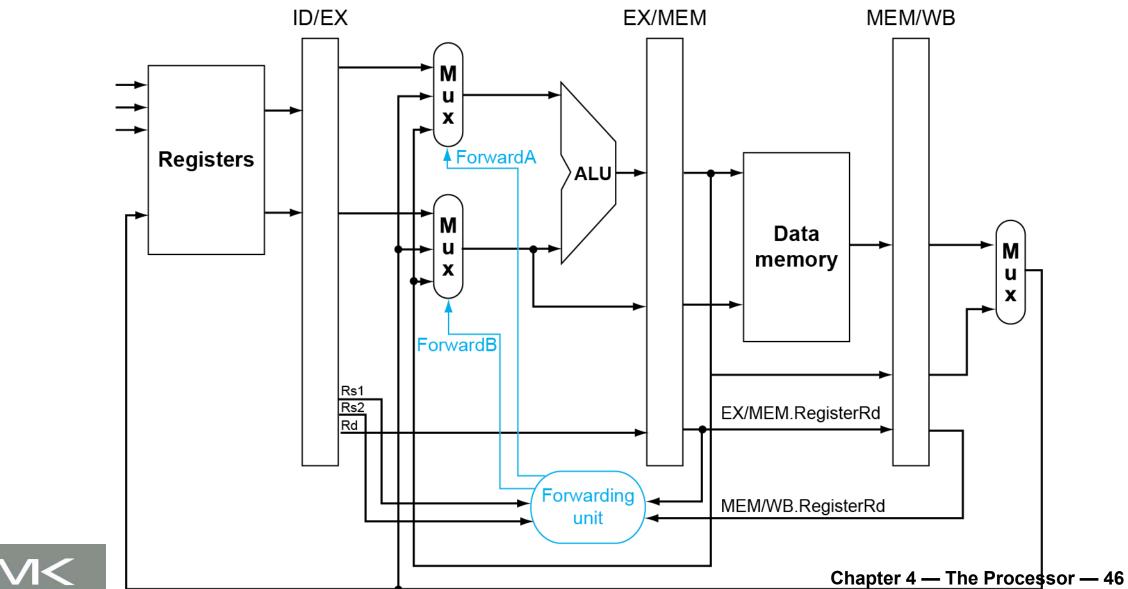
 There are multiple true data dependencies, read-afterwrite (RAW), on register x2.

We can resolve hazards with stalls or forwarding.



Assume no forwarding (except through the Register File) and hazards are solved by stalls

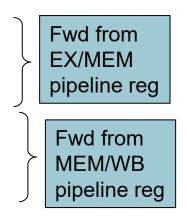
		1	2	3	4	5	6	7	8	9	10	11
sub	x2, x1,x3	F	D	Ε	Μ	W						
and	x12,x2,x5		F									
or	x13,x6,x2											
add	x14,x2,x2											
sd	x15,100(x2)											


Dependencies & Forwarding

Chapter 4 — The Processor — 45

Forwarding Paths

With Forwarding


		1	2	3	4	5	6	7	8	9	10
sub	x2, x1,x3	F	D	Ε	Μ	W					
and	x12,x2,x5		F								
or	x13,x6,x2										
add	x14,x2,x2										
sd	x15,100(x2)										

Detecting the Need to Forward

Pass register numbers along pipeline

- e.g., E.RegisterRs1 = register number for Rs1 sitting in ID/EX pipeline register
- ALU operand register numbers in EX stage are given by
 - E.RegisterRs1, E.RegisterRs2
- Data hazards when
 - 1a. M.RegisterRd = E.RegisterRs1
 - 1b. M.RegisterRd = E.RegisterRs2
 - 2a. W.RegisterRd = E.RegisterRs1
 - 2b. W.RegisterRd = E.RegisterRs2

Detecting the Need to Forward

But only if forwarding instruction will write to a register!
M.RegWrite, W.RegWrite
And only if Rd for that instruction is not x0

M.RegisterRd ≠ 0,
 W.RegisterRd ≠ 0

Forwarding Conditions

Mux control	Source	Explanation
ForwardA = 00	ID/EX	The first ALU operand comes from the register file.
ForwardA = 10	EX/MEM	The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01	MEM/WB	The first ALU operand is forwarded from data memory or an earlier ALU result.
ForwardB = 00	ID/EX	The second ALU operand comes from the register file.
ForwardB = 10	EX/MEM	The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01	MEM/WB	The second ALU operand is forwarded from data memory or an earlier ALU result.

Condition for Forwarding from Memory

if (M.RegWrite

and (M.RegisterRd \neq 0) and (M.RegisterRd = E.RegisterRs1)) ForwardA = 10

if (M.RegWrite

```
and (M.RegisterRd \neq 0)
```

and (M.RegisterRd = E.RegisterRs2)) ForwardB = 10

Double Data Hazard

Consider the sequence:

- add x1,x1,x2 add x1,x1,x3
- add x1, x1, x4
- Both hazards occur
 - Want to use the most recent
- Revise MEM hazard condition
 - Only fwd if EX hazard condition isn't true

Condition for Forwarding from Write back

if (W.RegWrite

```
and (W.RegisterRd ≠ 0)
and not(M.RegWrite and (M.RegisterRd ≠ 0)
```

and (M.RegisterRd ≠ E.RegisterRs1))

and (W.RegisterRd = E.RegisterRs1)) ForwardA = 01

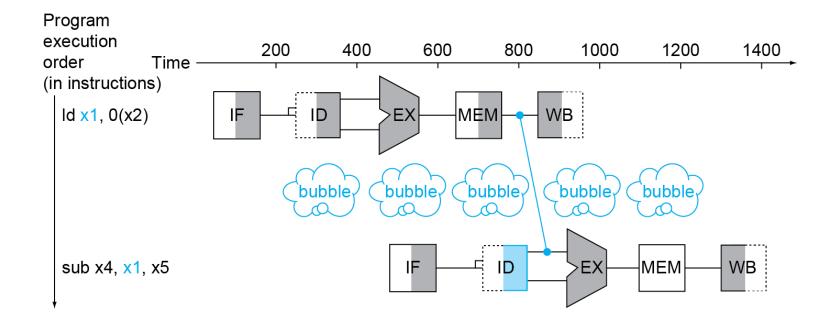
if (W.RegWrite

```
and (W.RegisterRd \neq 0)
```

and not(M.RegWrite and (M.RegisterRd \neq 0)

and (M.RegisterRd ≠ E.RegisterRs2))

and (W.RegisterRd = E.RegisterRs2)) ForwardB = 01



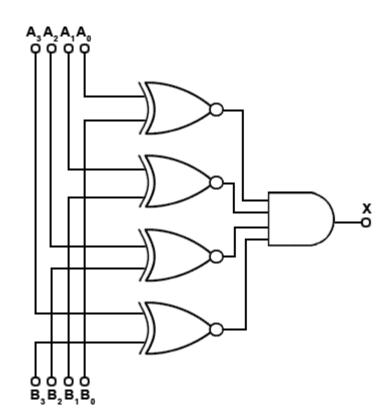
4.8 Data Hazards: Forwarding versus Stalling Data Hazards in ALU Instructions Load-Use Data Hazard Code Scheduling

Load-Use Data Hazard

- Can't always avoid stalls by forwarding
 - If value not computed when needed
 - Can't forward backward in time!

Load-Use Data Hazard

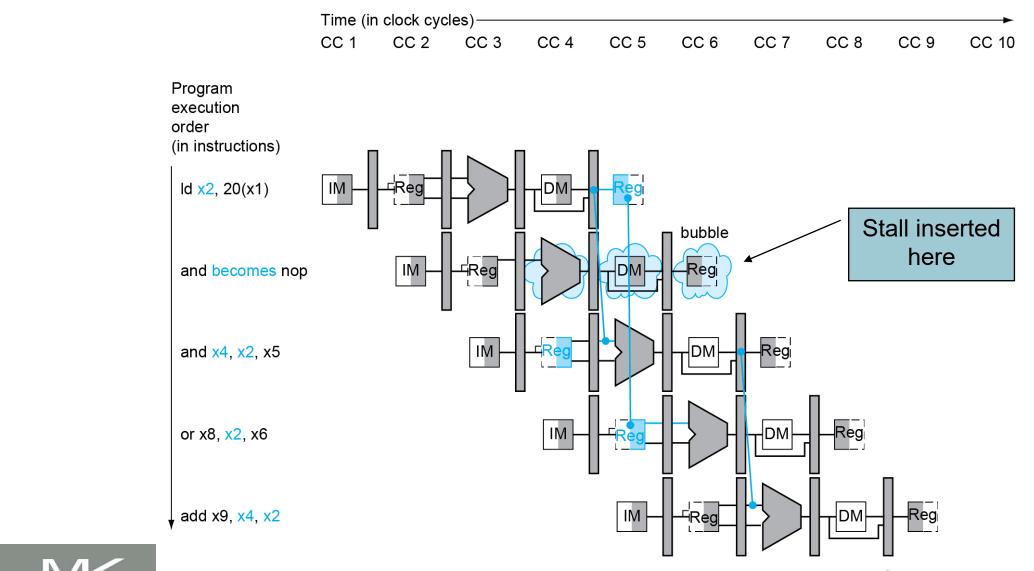
		1	2	3	4	5	6	7	8	9	10
٦d	x1, 0(x2)	F	D	Ε	Μ	W					
sub	x4,x1,x5		F	D							


Load-Use Hazard Detection

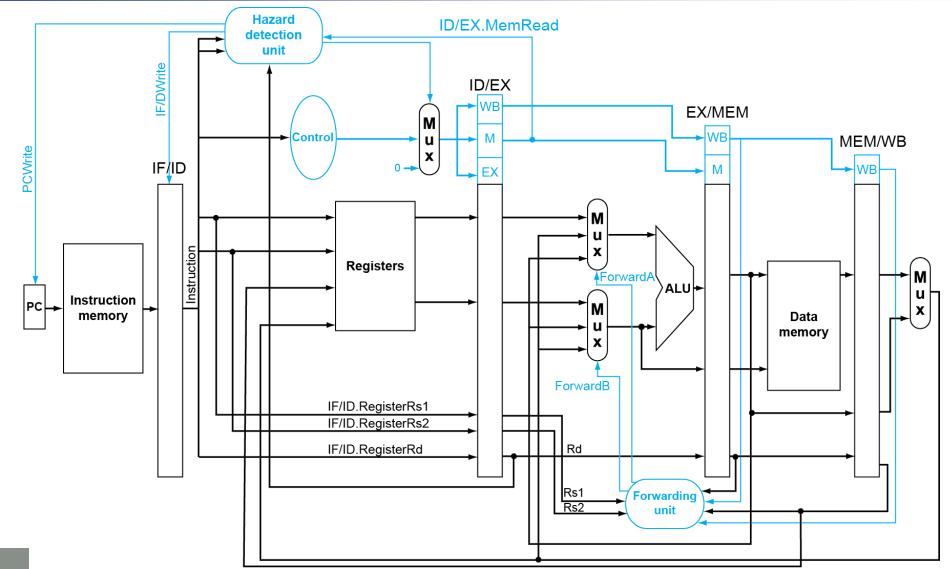
Check when using instruction is decoded in ID stage

- ALU operand register numbers in ID stage are given by
 - D.RegisterRs1, D.RegisterRs2
- Load-use hazard when
 - E.MemRead and
 - ((E.RegisterRd = D.RegisterRs1) or (E.RegisterRd = D.RegisterRs2))
- If detected, stall and insert bubble

Stall Circuit


Chapter 4 — The Processor — 58

How to Stall the Pipeline


- Force control values in ID/EX register to 0
 - EX, MEM and WB do nop (no-operation)
 - Prevent update of PC and IF/ID register
 - Using instruction is decoded again
 - Following instruction is fetched again
 - I-cycle stall allows MEM to read data for Id
 - Can subsequently forward to EX stage

Load-Use Data Hazard

Datapath with Hazard Detection

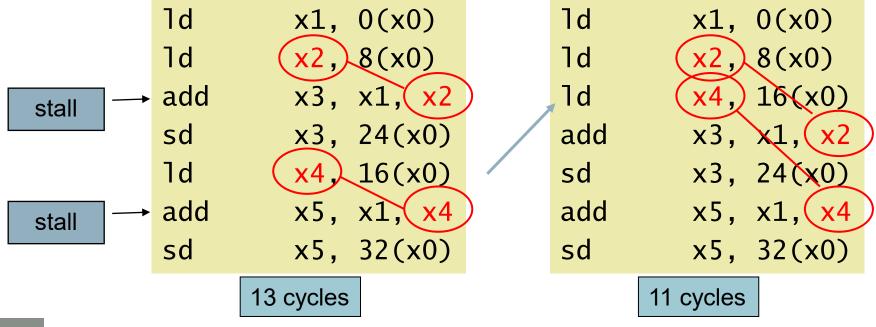
Stalls and Performance

The BIG Picture

- Stalls reduce performance
 - But are required to get correct results
- Compiler can arrange code to avoid hazards and stalls
 - Requires knowledge of the pipeline structure

Rearranging to solve Load-Use Data Hazard

		1	2	3	4	5	6	7	8	9	10
٦d	x1, 0(x2)	F	D	E	Μ	W					
sub	x4,x1,x5		F	D	D	E	Μ	W			
add	x7,x5,x6			F	F	D	E	Μ	W		


Rearranging to solve Load-Use Data Hazard

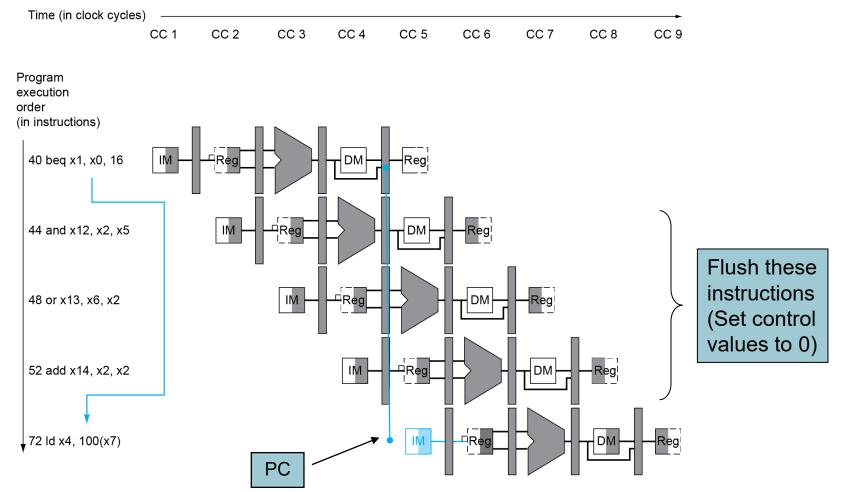
		1	2	3	4	5	6	7	8	9	10
٦d	x1, 0(x2)	F	D	Ε	Μ	W					
add	x7,x5,x6		F	D							
sub	x4,x1,x5										

Code Scheduling to Avoid Stalls

- Reorder code to avoid use of load result in the next instruction
- C code for a = b + e; c = b + f;

Contents

- 4.6 An Overview of Pipelining
- 4.7 Pipelined Datapath and Control (Review)
- 4.8 Data Hazards: Forwarding versus Stalling
- 4.9 Control Hazards
- 4.10 Exceptions
- 4.11 Parallelism via Instructions
- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks


Contents

4.9 Control Hazards Branch Hazards Reducing Branch Delay Branch Prediction Dynamic Branch Prediction Calculating Branch Target

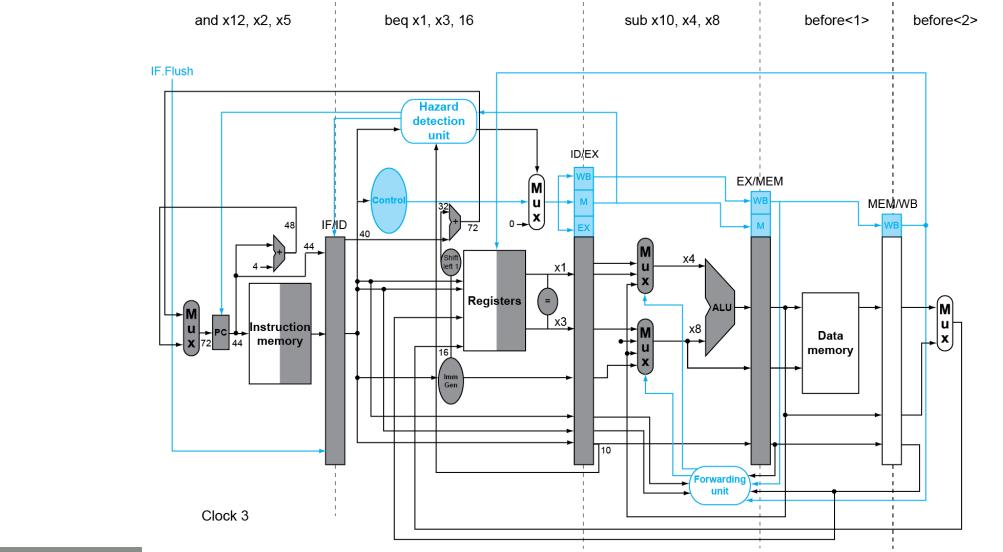
Branch Hazards

If branch outcome determined in MEM

Solving branches in the Memory stage

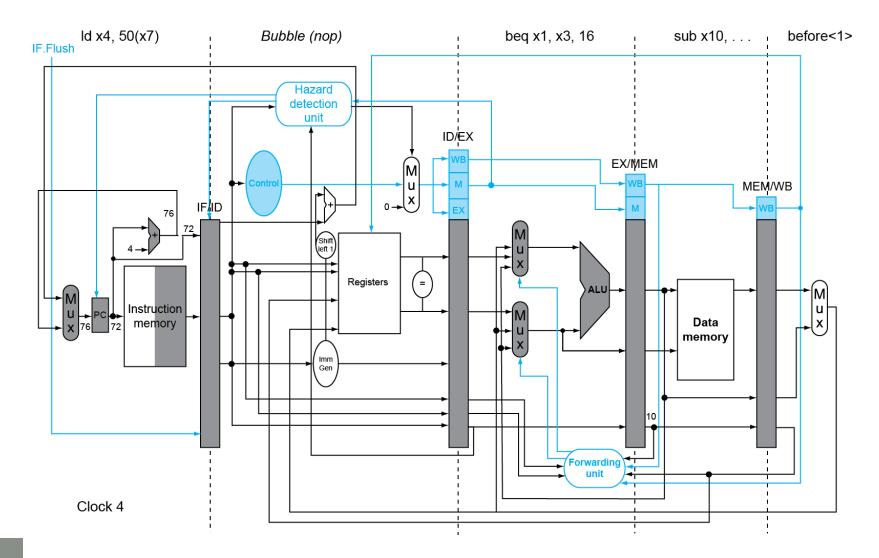
Assume taken branch

			1	2	3	4	5	6	7	8	9	10
40	beq	x1,x0,16	F	D	E	Μ	W					
44	and	x12,x2,x5		F								
48	or	x13,x6,x2										
52	add	x14,x2,x2										
72	٦d	x4,100(x7)										



Reducing Branch Delay

- Move hardware to determine outcome to ID stage
 - Target address adder
 - Register comparator
- Example: branch taken


Example: Branch Taken

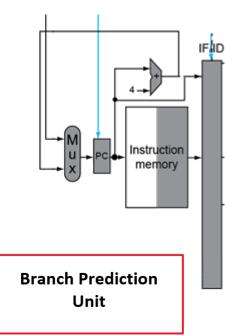
Chapter 4 — The Processor — 71

Example: Branch Taken

Chapter 4 — The Processor — 72

Solving branches in the Decode stage

Assume taken branch


			1	2	3	4	5	6	7	8	9	10
40	beq	x1,x0,16	F	D	E	Μ	W					
44	and	x12,x2,x5		F								
48	or	x13,x6,x2										
52	add	x14,x2,x2										
72	٦d	x4,100(x7)										

Branch Prediction

- Longer pipelines can't readily determine branch outcome early
 - Stall penalty becomes unacceptable
- Predict outcome of branch
 - Only stall if prediction is wrong
- In RISC-V pipeline
 - Can predict branches not taken
 - Fetch instruction after branch, with no delay

Predict Not Taken

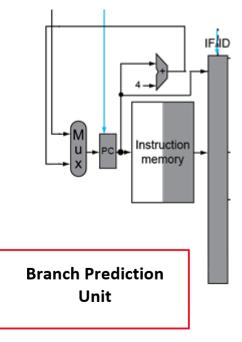
Solving branches in the Decode stage Assume branch is not taken.

		1	2	3	4	5	6	7	8	9	10
	beq x1,x0,L	F	D	Е	Μ	W					
	I2		F								
L	IT										

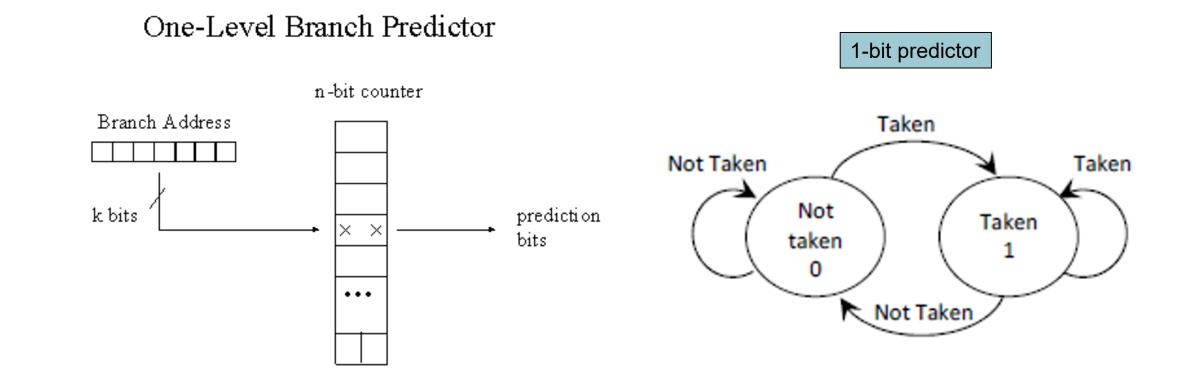
Predict Not Taken

Solving branches in the Decode stage Assume branch is taken.

		1	2	3	4	5	6	7	8	9	10
	beq x1,x0,L	F	D	Е	Μ	W					
	I2		F								
L	IT										


More-Realistic Branch Prediction

- Static branch prediction
 - Based on typical branch behavior
 - Example: loop and if-statement branches
 - Predict backward branches taken
 - Predict forward branches not taken
- Dynamic branch prediction
 - Hardware measures actual branch behavior
 - e.g., record recent history of each branch
 - Assume future behavior will continue the trend
 - When wrong, stall while re-fetching, and update history


Dynamic Branch Prediction

- In deeper and superscalar pipelines, branch penalty is more significant
- Use dynamic prediction
 - Branch prediction buffer (aka branch history table)
 - Indexed by recent branch instruction addresses
 - Stores outcome (taken/not taken)
 - To execute a branch
 - Check table, expect the same outcome
 - Start fetching from fall-through or target
 - If wrong, flush pipeline and flip prediction

Branch History Table (BHT)

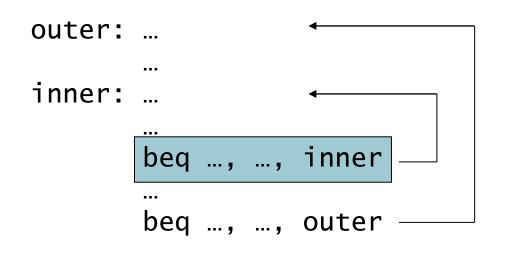
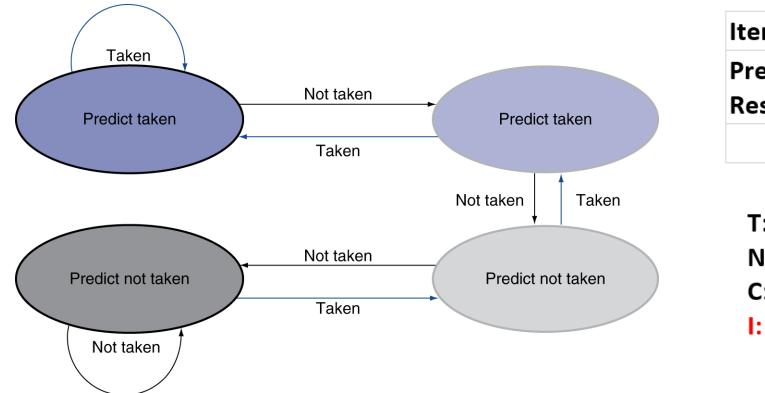


Table size = $n \times 2^k$ bits

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

Iteration	997	998	999	0	1
Prediction	Т	Т	Т	NT	Т
Result	С	С	I	I	С


T: Taken NT: Not Taken C: Correct prediction I: Incorrect prediction

- Mispredict as taken on last iteration of inner loop
- Then mispredict as not taken on first iteration of inner loop next time around

2-Bit Predictor

Only change prediction on two successive mispredictions

Iteration	997	998	999	0	1
Prediction	Т	Т	Т	Т	Т
Result	С	С	I	С	С

T: Taken NT: Not Taken C: Correct prediction I: Incorrect prediction

Calculating the Branch Target

- Even with predictor, still need to calculate the target address
 - 1-cycle penalty for a taken branch
- Branch target buffer
 - Cache of target addresses
 - Indexed by PC when instruction fetched
 - If hit and instruction is branch predicted taken, can fetch target immediately

Branch Target Buffer (BTB)

	Look up	Predicted PC
	• 2000 Op	
/—		
Number of		
entries /		
n branch- (
arget		
ouffer		
11		
V		
V		
V_	No: instruction	is
	No: instruction	
		be Branch
	not predicted to	be Branch

Contents

- 4.6 An Overview of Pipelining
 4.7 Pipelined Datapath and Control (Review)
 4.8 Data Hazards: Forwarding versus Stalling
 4.9 Control Hazards
- 4.10 Exceptions
- 4.11 Parallelism via Instructions
- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Contents

4.10 Exceptions **Exceptions and Interrupts** Handling Exceptions **Exceptions in a Pipeline Exception Example Multiple Exceptions** Imprecise Exceptions

Exceptions and Interrupts

- "Unexpected" events requiring change in flow of control
 - Different ISAs use the terms differently
- Exception
 - Arises within the CPU
 - e.g., undefined opcode, syscall, ...
- Interrupt
 - From an external I/O controller

Dealing with them without sacrificing performance is hard

Handling Exceptions

- Save PC of offending (or interrupted) instruction
 In RISC-V: Supervisor Exception Program Counter (SEPC)
- Save indication of the problem
 - In RISC-V: Supervisor Exception Cause Register (SCAUSE)
 - 64 bits, but most bits unused
 - Exception code field: 2 for undefined opcode, 12 for hardware malfunction, ...
- Jump to handler
 - Assume at 0000 0000 1C09 0000_{hex}

Handling Exceptions

SEPC, SCAUSE

An Alternate Mechanism

- Vectored Interrupts
 - Handler address determined by the cause
- Exception vector address to be added to a vector table base register:
 - Undefined opcode
 00 0100 0000_{two}
 - Hardware malfunction: 01 1000 0000_{two}
 - •
- Instructions either
 - Deal with the interrupt, or
 - Jump to real handler

An Alternate Mechanism

11	Undefined opcode	00 0100 0000 _{huo}
12	Hardware malfunction:	
13		
14		
15		

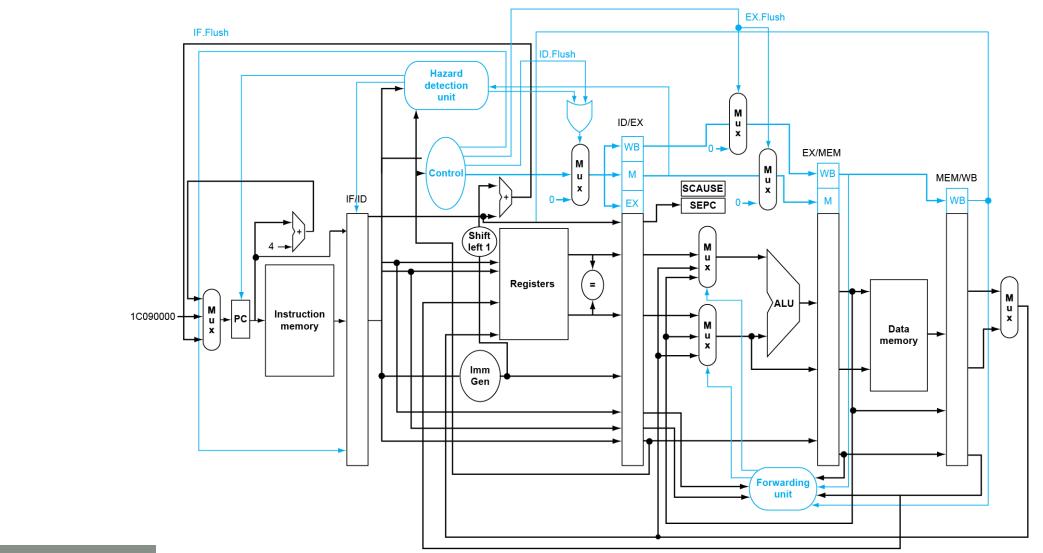
SEPC, SCAUSE

Handler Actions

- Read cause, and transfer to relevant handler
- Determine action required
- If restartable
 - Take corrective action
 - use SEPC to return to program
- Otherwise
 - Terminate program
 - Report error using SEPC, SCAUSE, …

Exceptions in a Pipeline

- Another form of control hazard
- Consider malfunction on add in EX stage add x1, x2, x1
 - Prevent x1 from being clobbered
 - Complete previous instructions
 - Flush add and subsequent instructions
 - Set SEPC and SCAUSE register values
 - Transfer control to handler
- Similar to mispredicted branch
 - Use much of the same hardware



Exceptions in a Pipeline

		1	2	3	4	5	6	7	8	9	10	11	12	13				
I	1	F	D	Ε	Μ	W												
a	dd x1,x2,x1		F															
I	3																	
I	4																	
I!	5																	
IHS																		

Pipeline with Exceptions

Chapter 4 — The Processor — 94

Exception Properties

Restartable exceptions

- Pipeline can flush the instruction
- Handler executes, then returns to the instruction
 - Refetched and executed from scratch

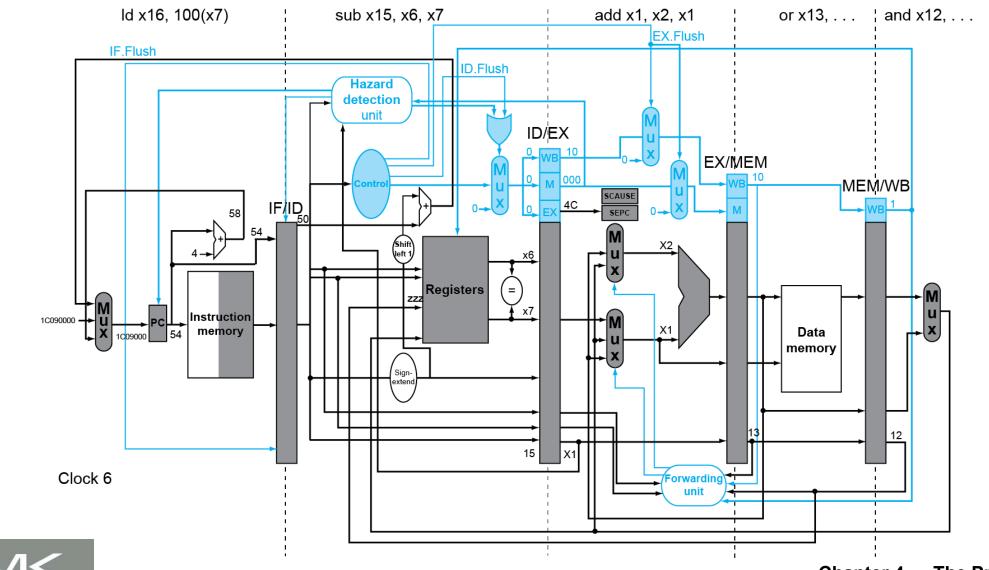
PC saved in SEPC register
 Identifies causing instruction

Exception Example

Exception on add in

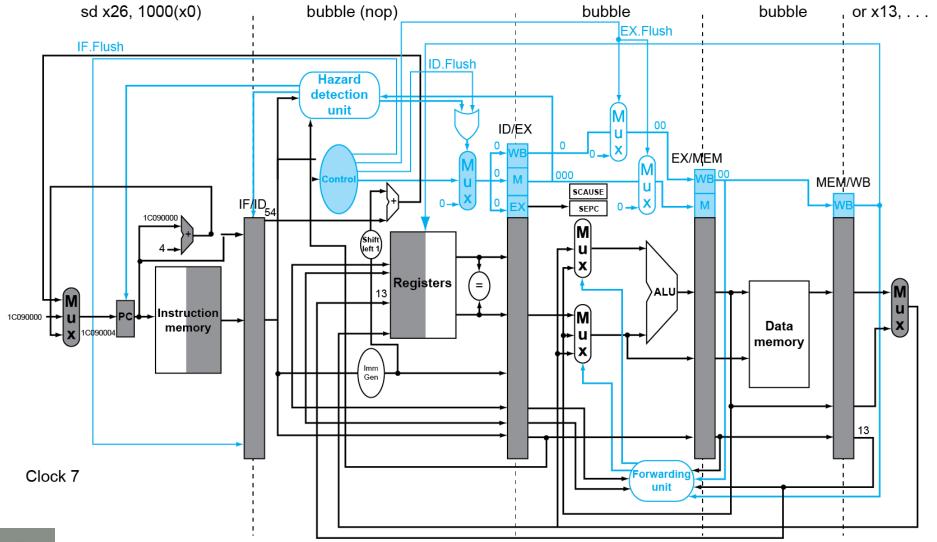
40	sub	x11,	x2, x4	
44	and	x12,	x2, x5	
48	or	x13,	x2, x6	
4c	add	x1,	x2, x1	
50	sub	x15,	x6, x7	
54	٦d	x16,	100(x7))

•••


Handler

...

1C090000	sd	x26,	1000(x10)
1c090004	sd	x27,	1008(x10)



Exception Example

Chapter 4 — The Processor — 97

Exception Example

Chapter 4 — The Processor — 98

Multiple Exceptions

- Pipelining overlaps multiple instructions
 - Could have multiple exceptions at once
- Simple approach: deal with exception from earliest instruction
 - Flush subsequent instructions
 - "Precise" exceptions
- In complex pipelines
 - Multiple instructions issued per cycle
 - Out-of-order completion
 - Maintaining precise exceptions is difficult!

Multiple Exceptions

		1	2	3	4	5	6	7	8	9	10	11	12	13			
	I1	F	D	Ε	Μ	W											
	add x1,x2,x1		F														
	I3 (bad)																
	I 4																
	15																
IHS																	

Imprecise Exceptions

- Just stop pipeline and save state
 - Including exception cause(s)
- Let the handler work out
 - Which instruction(s) had exceptions
 - Which to complete or flush
 - May require "manual" completion

Simplifies hardware, but more complex handler software

Not feasible for complex multiple-issue out-of-order pipelines

Contents

4.6 An Overview of Pipelining
4.7 Pipelined Datapath and Control (Review)
4.8 Data Hazards: Forwarding versus Stalling
4.9 Control Hazards
4.10 Exceptions
4.11 Parallelism via Instructions

- 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Contents

4.11 Parallelism via Instructions Instruction-Level Parallelism (ILP) Multiple Issue Static Multiple Issue VLIW Scheduling Static Multiple Issue Loop Unrolling **Dynamic Multiple Issue Register Renaming** Speculation Why Do Dynamic Scheduling

Instruction-Level Parallelism (ILP)

- Pipelining: executing multiple instructions in parallel
- To increase ILP
 - Deeper pipeline
 - Less work per stage \Rightarrow shorter clock cycle
 - Multiple issue
 - Replicate pipeline stages ⇒ multiple pipelines
 - Start multiple instructions per clock cycle
 - CPI < 1, so use Instructions Per Cycle (IPC)</p>
 - E.g., 4GHz 4-way multiple-issue
 - 16 BIPS, peak CPI = 0.25, peak IPC = 4
 - But dependencies reduce this in practice

Multiple Issue

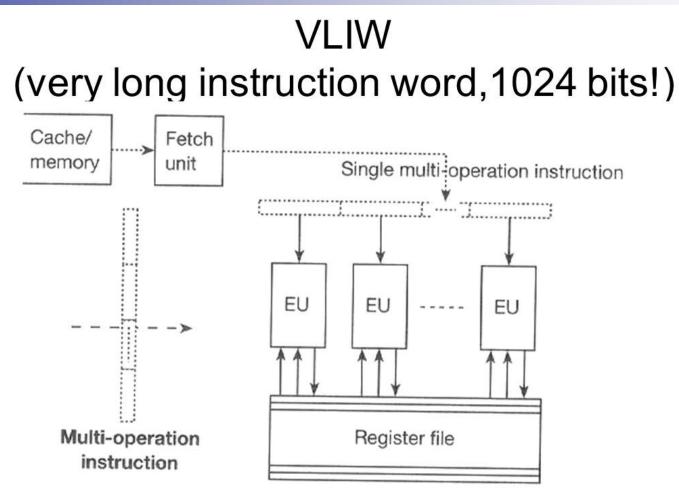
Static multiple issue

- Compiler groups instructions to be issued together
- Packages them into "issue slots"
- Compiler detects and avoids hazards

Dynamic multiple issue

- CPU examines instruction stream and chooses instructions to issue each cycle
- Compiler can help by reordering instructions
- CPU resolves hazards using advanced techniques at runtime

Static Multiple Issue


Compiler groups instructions into "issue packets"

- Group of instructions that can be issued on a single cycle
- Determined by pipeline resources required

- Think of an issue packet as a very long instruction
 - Specifies multiple concurrent operations
 - \Rightarrow Very Long Instruction Word (VLIW)

VILW

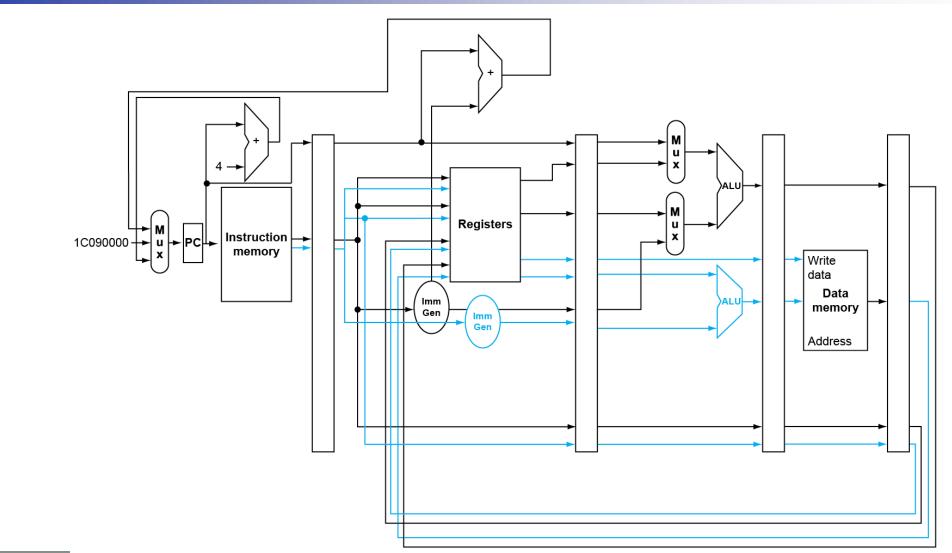
VLIW approach

Scheduling Static Multiple Issue

Compiler must remove some/all hazards

- Reorder instructions into issue packets
- No dependencies with a packet
- Possibly some dependencies between packets
 - Varies between ISAs; compiler must know!
- Pad with nop if necessary

RISC-V with Static Dual Issue


Two-issue packets

- One ALU/branch instruction
- One load/store instruction
- 64-bit aligned
 - ALU/branch, then load/store
 - Pad an unused instruction with nop

Address	Instruction type			Pip	eline Sta	ges		
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store			IF	ID	EX	MEM	WB

RISC-V with Static Dual Issue

Chapter 4 — The Processor — 110

- More instructions executing in parallel
- EX data hazard
 - Forwarding avoided stalls with single-issue
 - Now can't use ALU result in load/store in same packet
 - add x10, x0, x1
 - ld x2, 0(x10)
 - Split into two packets, effectively a stall
- Load-use hazard
 - Still one cycle use latency, but now two instructions
- More aggressive scheduling required

		1	2	3	4	5	6	7	8	9	10
add	x10, x0, x1	F	D	Ε	Μ	W					
nop		F	D	Ε	M	W					
nop											
٦d	x2, 0(x10)										

- Load-use hazard
 - Id x31, 0(x20)
 add x31, x31, x21
 - Still one cycle use latency, but now two instructions
- More aggressive scheduling required

		1	2	3	4	5	6	7	8	9	10
nop		F	D	Ε	Μ	W					
٦d	x31, 0(x20)	F	D	Ε	Μ	W					
nop											
nop											
add	x31, <mark>x31</mark> ,21										

Forwarding in Dual-Issue RISC-V

- In addition to forwarding from M and W to E, there are additional forwarding paths among the two pipelines, e.g.:
 - From W in memory pipeline to E in ALU pipeline
 - ld x31, 0(x20)
 - add x31, x31, x21
 - Refer to the previous slide
 - From W in ALU pipeline to M in memory pipeline
 - add x31, x31, x21
 - sd x31, 0(x20)

Forwarding in Dual-Issue RISC-V

From W in ALU pipeline to M in memory pipeline

			1	2	3	4	5	6	7	8	9	10
add	x31,	x31, x21	F	D	Ε	Μ	W					
nop												
nop												
sd	x31,	0(x20)										

Scheduling Example

Schedule this for dual-issue RISC-V

Loop:	٦d	x31,0(x20)	// x31=array element
	add	x31,x31,x21	// add scalar in x21
	sd	x31,0(x20)	// store result
	addi	<mark>x20</mark> ,x20,-8	<pre>// decrement pointer</pre>
	blt	x22,x20,Loop	// branch if $x22 < x20$

	ALU/branch	Load/store	cycle
Loop:			1
			2
			3
			4

Scheduling Example

Schedule this for dual-issue RISC-V

Loop:	٦d	x31,0(x20)	// x31=array element
	add	x31,x31,x21	// add scalar in x21
	sd	x31,0(x20)	// store result
	addi	<mark>x20</mark> ,x20,-8	<pre>// decrement pointer</pre>
	blt	x22,x20,Loop	// branch if $x22 < x20$

	ALU/branch	Load/store	cycle
Loop:	nop	ld x31,0(x20)	1
	addi <mark>x20</mark> ,x20,-8	nop	2
	add x31,x31,x21	nop	3
	blt x22, <mark>x20</mark> ,Loop	sd x31,8(x20)	4

Loop Unrolling

Replicate loop body to expose more parallelism

- Reduces loop-control overhead
- Use different registers per replication
 - Called "register renaming"
 - Avoid loop-carried "anti-dependencies"
 - Store followed by a load of the same register
 - Aka "name dependence", write-after-read
 - Or "output dependence", write-after-write
 - Reuse of a register name

Unrolling Steps

- 1. Replicate the loop instructions n times
- 2. Remove unneeded loop overhead
- 3. Modify instructions
- 4. Rename registers
- 5. Schedule instructions

Example

Loop:

```
1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
```


1. Replicate the loop instructions 4 times

Loop:

٦d	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)
addi	x20,x20,-8
blt	x22,x20,Loop

```
1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
```

```
1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
```

1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

2. Remove unneeded loop overhead

Loop:

ld	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)
addi	x20,x20,-8
blt	x22,x20,Loop

```
1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
```

```
1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
```

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

2. Remove unneeded loop overhead

Loop:

ld	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

3. Modify instructions

Loop:

ld	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

1d x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

3. Modify instructions

Loop:

ld	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)

ld x31,-16(x20)
add x31,x31,x21
sd x31,-16(x20)

ld x31,-8(x20)
add x31,x31,x21
sd x31,-8(x20)

1d x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

4. Rename registers

Loop:

ld	x31,0(x20)
add	x31,x31,x21
sd	x31,0(x20)

ld x31,-16(x20)
add x31,x31,x21
sd x31,-16(x20)

ld x31,-8(x20)
add x31,x31,x21
sd x31,-8(x20)

1d x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

4. Rename registers

Loop:

ld	x28,0(x20)
add	x28,x28,x21
sd	x28,0(x20)

1d x30,-16(x20)
add x30,x30,x21
sd x30,-16(x20)

1d x29,-8(x20)
add x29,x29,x21
sd x29,-8(x20)

1d x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

5. Schedule instructions

Loop:

٦d x28,0(x20)x28,x28,x21 add sd x28,0(x20)1d x29, -8(x20)add x29,x29,x21 sd x29, -8(x20)1d x30, -16(x20)add x30,x30,x21 sd x30,-16(x20) ld x31,-24(x20) add x31,x31,x21 x31, -24(x20)sd addi x20,x20,-32 x22,x20,Loop blt.

	ALU/branch	Load/store	cycle
Loop:			1
			2
			3
			4
			5
			6
			7
			8

Loop Unrolling Example

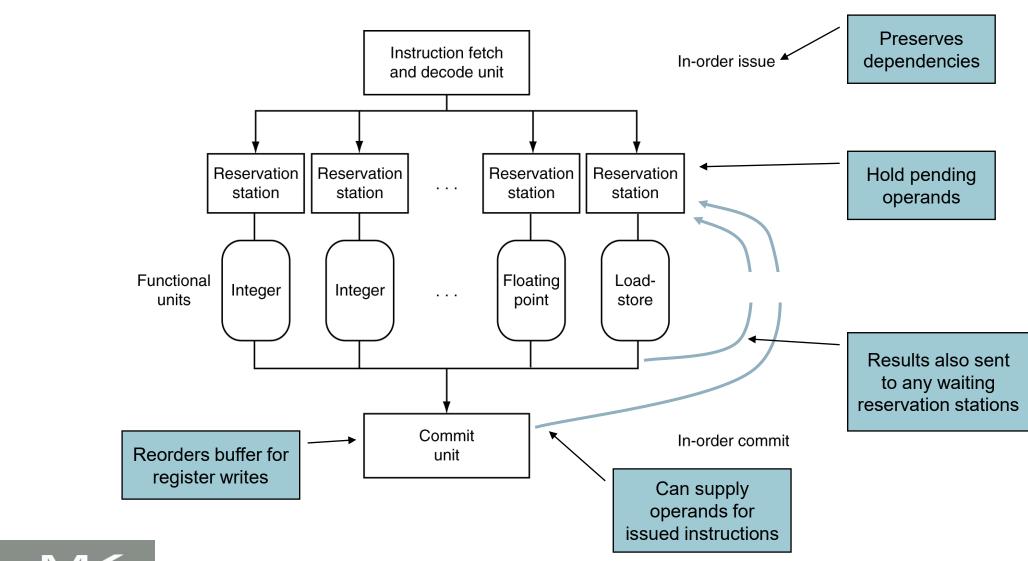
	ALU/branch	Load/store	cycle
Loop:	addi x20,x20,-32	ld x28, 0(x20)	1
	nop	ld x29, 24(x20)	2
	add x28,x28,x21	ld x30, <mark>16</mark> (x20)	3
	add x29,x29,x21	ld x31, 8(x20)	4
	add x30,x30,x21	sd x28, 32(x20)	5
	add x31,x31,x21	sd x29, 24(x20)	6
	nop	sd x30, <mark>16</mark> (x20)	7
	blt x22,x20,Loop	sd x31, 8(x20)	8

IPC = 14/8 = 1.75

Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

- "Superscalar" processors
- CPU decides whether to issue 0, 1, 2, ... each cycle
 - Avoiding structural and data hazards
- Avoids the need for compiler scheduling
 - Though it may still help
 - Code semantics ensured by the CPU



Dynamic Pipeline Scheduling

- Allow the CPU to execute instructions out of order to avoid stalls
 - But commit result to registers in order
- Example
 - ld x31,20(x21)
 add x1,x31,x2
 sub x23,x23,x3
 andi x5,x23,20
 - Can start sub while add is waiting for Id

Dynamically Scheduled CPU

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (IQ).

- I: Issue from IQ to reservation stations (RS), reading ready operands from register file (RF).
- **E**: Execute when functional unit (FU) is free and instr. in RS has ready operands.
- **W**: Write result from FU through common data bus (CDB) to reorder buffer (ROB) and RS.
- **C**: Commit results in order from ROB to RF and memory.
- Loads have **FIAMWC**, stores have **FIAC**. A: Address calculation

Single-issue Example

	1	2	3	4	5	6	7	8	9	10
ld x31,20(x21)										
add x1,x31,x2										
sub x23,x23,x3										
andi x5, <mark>x23</mark> ,20										

Register Renaming

- Reservation stations and reorder buffer effectively provide register renaming
- On instruction issue to reservation station
 - If operand is available in register file or reorder buffer
 - Copied to reservation station
 - No longer required in the register; can be overwritten
 - If operand is not yet available
 - It will be provided to the reservation station by a function unit
 - Register update may not be required

Examples

- Assume superscalar processor of degree 3
- Name dependence (WAR)
 - mul x1,x2,x3
 add x4,x1,x5
 ld x5,16(x21)
- Output dependence (WAW) mul x1,x2,x3 add x4,x1,x5 ld x1,16(x21)

Triple Issue: Name dependence (WAR)

Assume multiplication latency is 3 cycles

		1	2	3	4	5	6	7	8	9	10
mul	x1,x2,x3										
add	x4, <mark>x1,x5</mark>										
٦d	x5,16(x21)										

Triple Issue: Output Dependence (WAW)

Assume multiplication latency is 3 cycles

		1	2	3	4	5	6	7	8	9	10
mul	x1,x2,x3										
add	x4, <mark>x1</mark> ,x5										
٦d	x1,16(x21)										

Speculation

"Guess" what to do with an instruction

- Start operation as soon as possible
- Check whether guess was right
 - If so, complete the operation
 - If not, roll-back and do the right thing
- Common to static and dynamic multiple issue

Examples

- Speculate on branch outcome
 - Roll back if path taken is different
- Speculate on load
 - Roll back if location is updated

Compiler/Hardware Speculation

- Compiler can reorder instructions
 - e.g., move load before branch
 - Can include "fix-up" instructions to recover from incorrect guess
- Hardware can look ahead for instructions to execute
 - Buffer results until it determines they are actually needed
 - Flush buffers on incorrect speculation

Branch Speculation

Predict branch and continue issuing

- Don't commit until branch outcome determined
- **Example**: Assume a superscalar processor of degree 2 and the branch prediction is not taken.

Example: Assume a superscalar processor of degree 2 and the branch prediction is not taken. (Correct prediction)

...

Skip:

ld

I3

I4

Example: Assume a superscalar processor of degree 2 and the branch prediction is not taken. (Incorrect prediction)

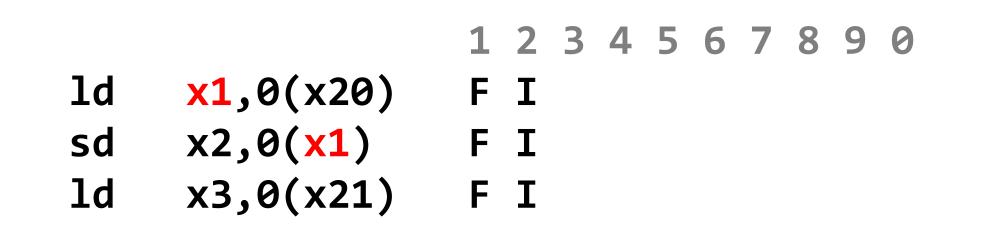
...

Skip:

ld

I3

I4



Load Speculation

- Avoid load and cache miss delay
 - Load before completing outstanding stores
 - Predict the effective address or loaded value
 - Bypass stored values to load unit
- Don't commit load until speculation cleared
- **Example:** Superscalar of degree 3.
 - ld x1,0(x20)
 sd x2,0(x1)
 ld x3,0(x21)

Example: Load speculation. Assume a superscalar processor of degree 3. Predict the second load does not depend on the store. (Correct prediction)

Example: Load speculation. Assume a superscalar processor of degree 3. Predict the second load does not depend on the store. (Incorrect prediction)

1 2 3 4 5 6 7 8 9 0 1d x1,0(x20) F I <t

Speculation and Exceptions

- What if exception occurs on a speculatively executed instruction?
 - e.g., speculative load before null-pointer check
- Static speculation
 - Can add ISA support for deferring exceptions
- Dynamic speculation
 - Can buffer exceptions until instruction completion (which may not occur)

Exceptions Examples

- Assume superscalar processor of degree 3 with 2 address calculation units
- E1: Predict branch as not take, but resolve to taken. The 1d has exception in M.

Exceptions Examples

- Assume superscalar processor of degree 3 with 2 address calculation units
- E2: Assume the first sd has exception in C.

- ld x1,0(x20) F I
- sd x1,0(x21) F I
- sd x2,16(x21) F I

Why Do Dynamic Scheduling?

- Why not just let the compiler schedule code?
- Not all stalls are predicable
 - e.g., cache misses
- Can't always schedule around branches
 - Branch outcome is dynamically determined
- Different implementations of an ISA have different latencies and hazards

Does Multiple Issue Work?

The BIG Picture

- Yes, but not as much as we'd like
- Programs have real dependencies that limit ILP
- Some dependencies are hard to eliminate
 - e.g., pointer aliasing
- Some parallelism is hard to expose
 - Limited window size during instruction issue
- Memory delays and limited bandwidth
 - Hard to keep pipelines full
- Speculation can help if done well

Power Efficiency

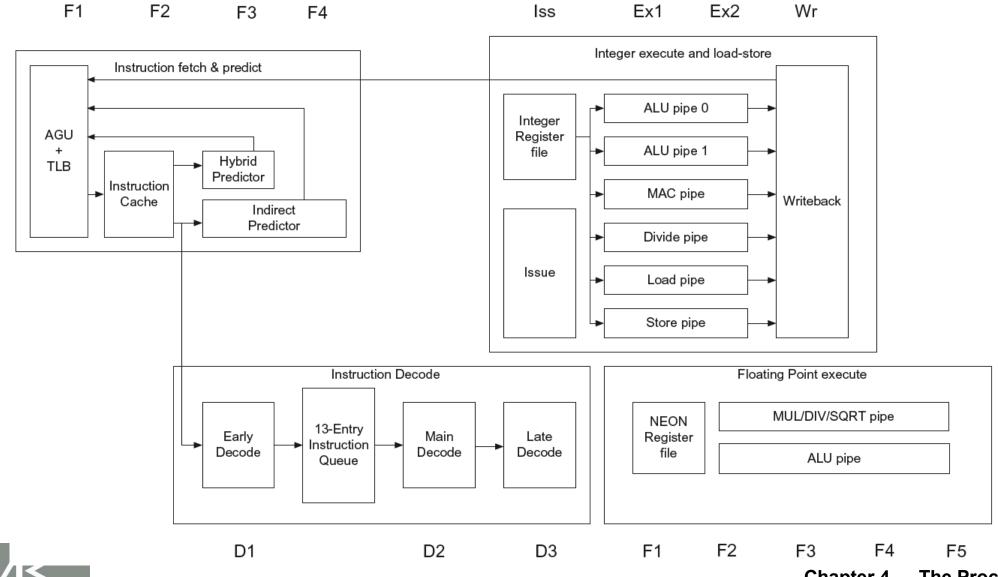
- Complexity of dynamic scheduling and speculations requires power
- Multiple simpler cores may be better

Microprocessor	Year	Clock Rate	Pipeline Stages	lssue Width	Out-of-Order/ Speculation	Cores/ Chip	Power
Intel 486	1989	25 MHz	5	1	No	1	5W
Intel Pentium	1993	66 MHz	5	2	No	1	10W
Intel Pentium Pro	1997	200 MHz	10	3	Yes	1	29W
Intel Pentium 4 Willamette	2001	2000 MHz	22	3	Yes	1	75W
Intel Pentium 4 Prescott	2004	3600 MHz	31	3	Yes	1	103W
Intel Core	2006	3000 MHz	14	4	Yes	2	75W
Intel Core i7 Nehalem	2008	3600 MHz	14	4	Yes	2-4	87W
Intel Core Westmere	2010	3730 MHz	14	4	Yes	6	130W
Intel Core i7 Ivy Bridge	2012	3400 MHz	14	4	Yes	6	130W
Intel Core Broadwell	2014	3700 MHz	14	4	Yes	10	140W
Intel Core i9 Skylake	2016	3100 MHz	14	4	Yes	14	165W
Intel Ice Lake	2018	4200 MHz	14	4	Yes	16	185W

sor — 153

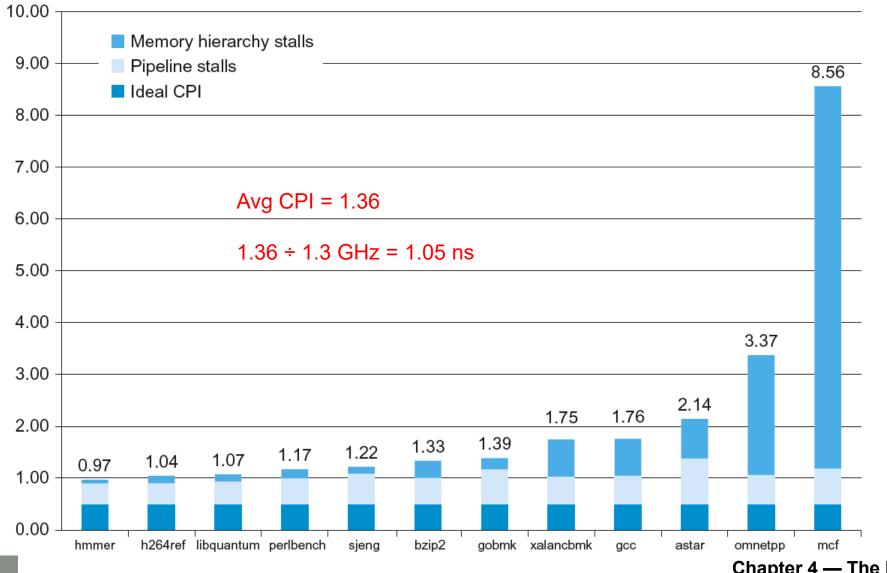
Contents

- 4.6 An Overview of Pipelining 4.7 Pipelined Datapath and Control (Review) 4.8 Data Hazards: Forwarding versus Stalling 4.9 Control Hazards 4.10 Exceptions 4.11 Parallelism via Instructions 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks



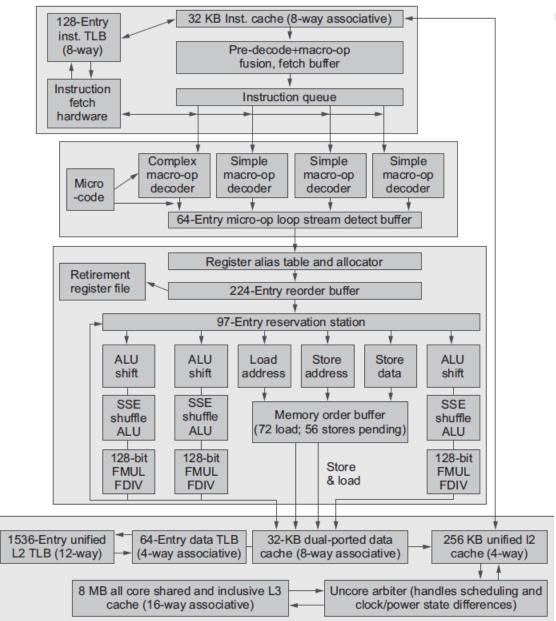
Cortex A53 and Intel i7

Processor	ARM A53	Intel Core i7 6700
Market	Personal Mobile Device	Server, cloud
Thermal design power	100 milliWatts (1 core @ 1 GHz)	130 Watts
Clock rate	1.3 GHz	3.4 GHz
Cores/Chip	4 (configurable)	4
Floating point?	Yes	Yes
Multiple issue?	Dynamic	Dynamic
Peak instructions/clock cycle	2	4
Pipeline stages	8	14
Pipeline schedule	Static in-order	Dynamic out-of-order with speculation
Branch prediction	Hybrid	Multi-level
1 st level caches/core	16-64 KiB I, 16-64 KiB D	32 KiB I, 32 KiB D
2 nd level caches/core	128-2048 KiB	256 KiB (per core)
3 rd level caches (shared)	(platform dependent)	8 MB



ARM Cortex-A53 Pipeline

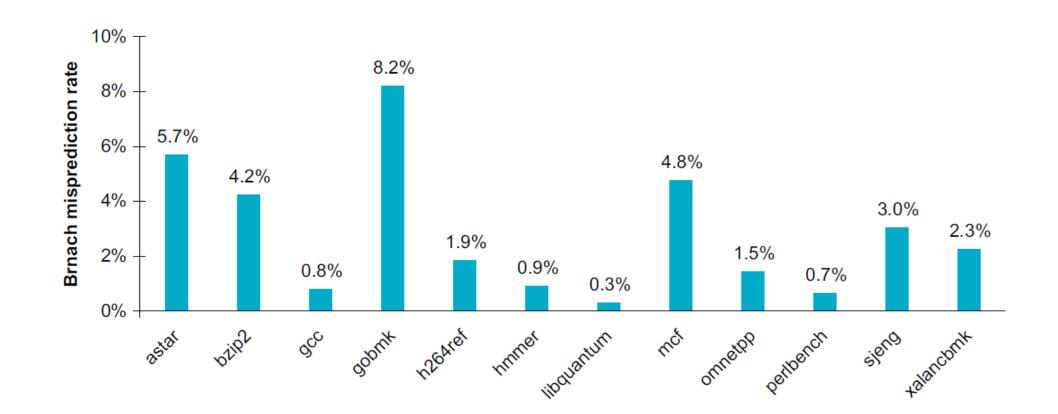
Chapter 4 — The Processor — 156


ARM Cortex-A53 Performance

Chapter 4 — The Processor — 157

Core i7 Pipeline

Chapter 4 — The Processor — 158



Core i7 Performance

Avg CPI = 0.642 0.64 ÷ 3.4 GHz = 0.19 ns **Cycles per instruction** The i7 is five times faster. But uses 200x as much power! 1.44 1.5 -1.37 1 0.81 0.76 0.71 0.68 0.60 0.54 0.47 0.42 0.41 0.5 -0.38 0 -DIIP oobnik hooket hunner induantum sieng met astar ormethe perbendin talancont o^{cc}

Core i7 Performance

Contents

- 4.6 An Overview of Pipelining 4.7 Pipelined Datapath and Control (Review) 4.8 Data Hazards: Forwarding versus Stalling 4.9 Control Hazards 4.10 Exceptions 4.11 Parallelism via Instructions 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Fallacies

- Pipelining is easy (!)
 - The basic idea is easy
 - The devil is in the details
 - e.g., detecting data hazards
- Pipelining is independent of technology
 - So why haven't we always done pipelining?
 - More transistors make more advanced techniques feasible
 - Pipeline-related ISA design needs to take account of technology trends
 - e.g., predicated instructions

Pitfalls

Poor ISA design can make pipelining harder

- e.g., complex instruction sets (VAX, IA-32)
 - Significant overhead to make pipelining work
 - IA-32 micro-op approach
- e.g., complex addressing modes
 - Register update side effects, memory indirection
- e.g., delayed branches
 - Advanced pipelines have long delay slots

Contents

- 4.6 An Overview of Pipelining 4.7 Pipelined Datapath and Control (Review) 4.8 Data Hazards: Forwarding versus Stalling 4.9 Control Hazards 4.10 Exceptions 4.11 Parallelism via Instructions 4.12 Putting it All Together: The Intel Core i7 6700 and ARM Cortex-A53
- 4.15 Fallacies and Pitfalls
- 4.16 Concluding Remarks

Concluding Remarks

- Pipelining improves instruction throughput using parallelism
 - More instructions completed per second
 - Latency for each instruction not reduced
- Hazards: structural, data, control
- Multiple issue and dynamic scheduling (ILP)
 - Dependencies limit achievable parallelism
 - Complexity leads to the power wall

