CPE432: Computer Architecture and Organization (2)

Course Introduction

Prof. Gheith Abandah أ.د. غيث علي عبندة

Outline

- Course Information
- Video: Advanced CPU Designs
- Textbook and References
- Course Objectives and Outcomes
- Course Topics
- Policies
- Grading
- Important Dates

Course Information

Instructor: Prof. Gheith Abandah

• Email: abandah@ju.edu.jo

• Office: **CPE 406**

Home page: http://www.abandah.com/gheith

• MS Teams: <u>Link</u>

 Prerequisites: CPE 335: Computer Architecture and Organization (1)

• Office hours: **Sun – Thu:** 13:00 – 14:00

Advanced CPU Designs

From CrashCourse

https://youtu.be/rtAlC5J1U40

Textbook and References

 Patterson and Hennessy. Computer Organization & Design RISC-V Edition: The Hardware/Software Interface, Second ed., Morgan Kaufmann, Elsevier Inc., 2021.

References:

- Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 6th ed., Morgan Kaufmann, Elsevier Inc., 2017.
- J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Superscalar Processors, Mc Graw Hill, 2005.
- D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach, Morgan Kaufmann, 1998.
- J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 1998.
- Course slides at: http://www.abandah.com/gheith/?page_id=3019

Course Objectives

- Introduce students to the technological changes in designing and building processors and computers.
- Introduce students to the advanced techniques used in modern processors including pipelining, branch prediction, dynamic and speculative execution, multiple issue, and software optimizations.
- Introduce the students to the basic concepts and technologies used in designing memory and storage systems including cache, main memory, virtual memory, and secondary memory.

Course Outcomes

- Understand and analyze the performance of single-processor architectures [1].
- Understand and analyze the performance of memory hierarchy levels [1].
- Understand the technological improvements and the effect of these improvements on modern computers [4].
- Survey research papers that describe contemporary issues in computer design [3, 4, 7].

Course Topics

- Introduction
- Computer Technology and Performance (1.2, 1.5, 1.7-1.11)
- Processor: Instruction-Level Parallelism (4.6–4.12, 4.15–4.16)

Midterm Exam

Memory Hierarchy (5.1–5.11, 5.13, 5.16–5.17)

Final Exam

Policies

- Attendance is required
- Be ready to participate in solving class problems
- All submitted work must be yours
- Cheating will not be tolerated
- Open-book exams
- Check department announcements at: <u>http://www.facebook.com/pages/Computer-Engineering-Department/369639656466107</u>

Grading

•	Two Quizzes	10%
•	Technology Trends Research Project	10%
•	Midterm Exam	30%
•	Final Exam	50%

Important Dates

Mon 27 Feb 2023	First Lecture	
16-30 Apr 2023	Midterm Exam Period	
Mon 29 May 2023	Project Report Due	
Sun 4 Jun 2023	Last Date to Withdraw	
Mon 5 Jun 2023	Last Lecture	
8-20 Jun 2023	Final Exam Period	