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Reference

• Chapter 15: Processing Sequences Using
RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3
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Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent 
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0
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1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series 
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or 
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)
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2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left), unrolled through 
time (right).
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2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.
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3. Forecasting a Time Series

• The data is a sequence of one or 
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future 
values
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3.1 Implementing a Simple RNN

# Sequential model of one neuron

model = keras.Sequential([

layers.SimpleRNN(1, input_shape=[None, 1])

])

# MSE = 0.011, Dense achieves 0.004
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3.2 Deep RNNs
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3.2 Deep RNNs

# Sequential model of two hidden RNN layers

model = keras.Sequential([

layers.SimpleRNN(20,

return_sequences=True, # output all steps

input_shape=[None, 1]),

layers.SimpleRNN(20),

layers.Dense(1)

])

# MSE = 0.0026
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4. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence 
RNN? What about a sequence-to-vector RNN, and a vector-to-
sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? 
What does each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which 
RNN layers should have return_sequences=True? What about a 
sequence-to-vector RNN?
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