
Recurrent Neural Networks

Prof. Gheith Abandah

1

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR)
618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

• Chapter 15: Processing Sequences Using
RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3

2

https://github.com/ageron/handson-ml3

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series
1. Implementing a simple RNN

2. Deep RNNs

4. Exercises

3

Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0

4

https://youtu.be/C0xoB8L8ms0

1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)

5

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series
1. Implementing a simple RNN

2. Deep RNNs

4. Exercises

6

2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left), unrolled through
time (right).

7

2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

8

Outline

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series
1. Implementing a simple RNN

2. Deep RNNs

4. Exercises

9

3. Forecasting a Time Series

• The data is a sequence of one or
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future
values

10

3.1 Implementing a Simple RNN

Sequential model of one neuron

model = keras.Sequential([

layers.SimpleRNN(1, input_shape=[None, 1])

])

MSE = 0.011, Dense achieves 0.004

11

3.2 Deep RNNs

12

3.2 Deep RNNs

Sequential model of two hidden RNN layers

model = keras.Sequential([

layers.SimpleRNN(20,

return_sequences=True, # output all steps

input_shape=[None, 1]),

layers.SimpleRNN(20),

layers.Dense(1)

])

MSE = 0.0026

13

4. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence
RNN? What about a sequence-to-vector RNN, and a vector-to-
sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have?
What does each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which
RNN layers should have return_sequences=True? What about a
sequence-to-vector RNN?

14

Summary

1. Introduction

2. Recurrent neurons and layers

3. Forecasting a time series
1. Implementing a simple RNN

2. Deep RNNs

4. Exercises

15

	Slide 1: Recurrent Neural Networks
	Slide 2: Reference
	Slide 3: Outline
	Slide 4: Introduction
	Slide 5: 1. Introduction
	Slide 6: Outline
	Slide 7: 2. Recurrent Neurons and Layers
	Slide 8: 2. Recurrent Neurons and Layers
	Slide 9: Outline
	Slide 10: 3. Forecasting a Time Series
	Slide 11: 3.1 Implementing a Simple RNN
	Slide 12: 3.2 Deep RNNs
	Slide 13: 3.2 Deep RNNs
	Slide 14: 4. Exercises
	Slide 15: Summary

