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Reference

• Chapter 14: Deep Computer Vision Using
Convolutional Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3
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1. Introduction

• YouTube Video: Convolutional Neural Networks (CNNs) explained 
from Deeplizard

https://youtu.be/YRhxdVk_sIs
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1. Introduction

• Convolutional neural networks (CNNs) emerged from the study of 
the brain’s visual cortex.

• Many neurons in the visual cortex have a small local receptive field.
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2. Convolutional Layer

• Neurons in one layer are not 
connected to every single 
pixel/neuron in the previous 
layer, but only to pixels/neurons 
in their receptive fields.

• This architecture allows the 
network to concentrate on low-
level features in one layer, then 
assemble them into higher-level
features in the next layer.

• Each layer is represented in 2D.
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2. Convolutional Layer

• fh and fw are the height and 
width of the receptive field.

• Zero padding: In order for a 
layer to have the same height 
and width as the previous layer, 
it is common to add zeros 
around the inputs.
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2.1 Filters

• A neuron’s weights can be 
represented as a small image the 
size of the receptive field, called 
filters.

• When all neurons in a layer use 
the same line filters, we get the 
feature maps on the top.
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2.2 Stacking Feature Maps

• In reality, each layer is 3D
composed of several feature maps 
of equal sizes.

• Within one feature map, all 
neurons share the same 
parameters, but different feature 
maps may have different
parameters.

• Once the CNN has learned to 
recognize a pattern in one 
location, it can recognize it in any 
other location.
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3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input image in order to 
reduce the computational load, the memory usage, and the number 
of parameters.

• It aggregates the inputs using max or mean.
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4. CNN Architectures

• Stack few convolutional layers (each one generally followed by a 
ReLU layer), then a pooling layer, then another few convolutional 
layers, then another pooling layer, and so on. The image gets smaller 
and smaller, but it also gets deeper and deeper. At the end, a dense
NN is added.
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5. Example – Fashion MNIST
model = keras.models.Sequential([

keras.layers.Conv2D(64, 7, activation="relu", padding="same",
input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation="softmax")

])
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Feature maps

Filter size

2×2 window and stride 2



6. Exercise

14.9. Build your own CNN from scratch and try to achieve the highest 
possible accuracy on MNIST.
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