
Deep Neural Networks

Prof. Gheith Abandah

1

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR)
618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

• Chapter 11: Training Deep Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3

2

https://github.com/ageron/handson-ml3

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

3

1. Introduction

• Deep neural networks can solve complex problems and provide end-
to-end solutions.

• When you train a deep network, you may face the following
problems:
• Vanishing or exploding gradients: The gradients grow smaller and smaller, or

larger and larger.

• Not enough data

• Long training time

• Overfitting

4

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

5

2. Vanishing/Exploding Gradients Problems

• Vanishing Problem: In the backpropagation algorithm, gradients
often get smaller and smaller as the algorithm progresses down
to the lower layers.
• Lower layers’ connection are left unchanged.

• Exploding Problem: the gradients can grow bigger and bigger.
• Layers get very large weight updates, and the algorithm diverges.

• Main Reasons: Using activation functions
(logistic sigmoid) and weight initialization
(normal distribution with 0-mean and
1-standard deviation).

6

2.1 Glorot and He Initialization

• Glorot and Bengio: For the signal not to die out, nor to explode and
saturate, the variance of the outputs of each layer should be equal to
the variance of its inputs.

• Solution: the connection weights of each layer must be initialized
randomly as follows:

7

2.1 Glorot and He Initialization

• Recommended initialization parameters for each type of activation
function.

• For the uniform distribution, use

• Keras uses Glorot initialization with a uniform distribution.

8

2.1 Glorot and He Initialization

• To change it to He initialization:
layers.Dense(50, activation="relu",

kernel_initializer="he_normal") # Or "he_uniform"

• He initialization with a uniform distribution but based on fanavg:
he_avg_init = keras.initializers.VarianceScaling(scale=2.,

mode='fan_avg', distribution='uniform')

keras.layers.Dense(50, activation="sigmoid",

kernel_initializer=he_avg_init)

9

2.2 Better Activation Functions

• Step does not work with the
back propagation algorithm.

• ReLU is better than sigmoid
because it does not saturate for
positive values and is fast.

• Dying ReLUs problem: A neuron
dies when its input is negative
for all training instances.

10

2.2 Better Activation Functions

• Leaky ReLU performs better
than ReLU.

• α between 0.01 and 0.3

11

model = keras.models.Sequential([
…
layers.Dense(50, kernel_initializer="he_normal"),
layers.LeakyReLU(alpha=0.2), # added as a layer
…

])

2.2 Better Activation Functions

• Exponential linear unit (ELU)
also performs better than ReLU
but is slower.

• Scaled ELU (SELU) performs best
with MLP networks.

• Self-normalize networks: Scale
inputs, SELU, and lecun_normal,
no other regularization.

12

layer = layers.Dense(10, activation="selu",
kernel_initializer="lecun_normal")

2.2 Better Activation Functions

• GELU: 𝑧Φ(𝑧), where Φ(𝑧) is the
Gaussian CDF.

• Swish: Can be parametrized
Swish𝛽 𝑧 = 𝑧𝜎(𝛽𝑧).

• Mish: 𝑧 tanh(softplus 𝑧)),
where
softplus 𝑧 = log(1 + exp 𝑧).

13

2.2 Better Activation Functions

• Summary:
• Results: Mish > Swish > GELU >

SELU > ELU > leaky ReLU > ReLU >
tanh > logistic

• Speed: ReLU > leaky ReLU > ELU >
SELU > Swish > Mish > GELU

• For deep MLP, try SELU.

• For simple tasks or fast
response, use ReLU.

• For complex tasks and fast
response, use leaky ReLU.

• Names in Keras
• elu
• gelu
• linear
• relu
• selu
• sigmoid
• softmax
• swish
• tanh

14

2.3 Batch Normalization

• The techniques in §2.1 and §2.2 can significantly reduce the
vanishing/exploding gradients problems at the beginning of training,
but don’t guarantee that they won’t come back during training.

• Batch Normalization (BN) zero-centers and normalizes each layer
input using statistics from the mini batch (> 30).

• Other benefits: Works even without §2.1 and §2.2, allows using
larger LR, and have regularization effect.

15

2.3 Batch Normalization

• Implementing batch normalization with Keras is easy.

model = keras.Sequential([
layers.Flatten(input_shape=[28, 28]),
layers.BatchNormalization(),
layers.Dense(300, activation="relu",

kernel_initializer="he_normal"),
layers.BatchNormalization(),
layers.Dense(100, activation="relu",

kernel_initializer="he_normal"),
layers.BatchNormalization(),
layers.Dense(10, activation="softmax")

])

16

Eliminates the need to
normalize the input.

2.4 Gradient Clipping

• Mitigates the exploding gradients problem by clipping the gradients
during backpropagation so that they never exceed some threshold.

• Use it when you observe that the gradients are exploding during
training. You can track the size of the gradients using TensorBoard.

• To clip the gradient vector to a value between -1.0 and 1.0:
optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

17

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

18

3. Reusing Pretrained Layers

• Transfer Learning: Using
one NN developed for a
certain task to solve
another task.

• Useful to shorten training
time or with small
datasets.

19

Transfer Learning with Keras
Load the ready model, e.g., classifies 8 classes

model_A = keras.models.load_model("my_model_A")

Create a new model (binary classifier) using all but the last layer

model_B_on_A = keras.Sequential(model_A.layers[:-1])

model_B_on_A.add(layers.Dense(1, activation="sigmoid"))

Freeze loaded layers then compile

for layer in model_B_on_A.layers[:-1]:

layer.trainable = False

optimizer = keras.optimizers.SGD(learning_rate=0.001)

model_B_on_A.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

20

Transfer Learning with Keras

Train the model for a few epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,

validation_data=(X_valid_B, y_valid_B))

Unreeze loaded layers

for layer in model_B_on_A.layers[:-1]:

layer.trainable = True

Compile with small learning rate (defalut = 1e-2)

optimizer = keras.optimizers.SGD(learning_rate=1e-4)

model_B_on_A.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

21

Transfer Learning with Keras

Train the model for more epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,

validation_data=(X_valid_B, y_valid_B))

22

Test accuracy without transfer learning = 91.85%
Test accuracy with transfer learning = 93.85%

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

23

4. Faster Optimizers

• The SGD optimizer can be made faster using momentum
optimization

24

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

β

4. Faster Optimizers

• Nesterov momentum optimization measures the gradient of the cost
function not at the local position θ but slightly ahead in the direction
of the momentum, at θ + βm

25

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9,
nesterov=True)

4. Faster Optimizers

• The adaptive optimizers such as AdaGrad, RMSProp, Adam,
AdaMax, Nadam, and AdamW scale down the gradient vector along
the steepest dimensions.

26

optimizer = keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9)
optimizer = keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999)

4. Faster Optimizers

• The adaptive optimizers often converge fast. But they can give poor
generalization.

• Solution: Use Nesterov accelerated gradient.

27

Class Speed Quality

SGD * ***

SGD with momentum, Nesterov ** ***

Adagrad *** *

RMSProp, Adam, AdaMax, Nadam, AdamW *** ** or ***

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

28

5. Learning Rate Scheduling

• The learning rate affects the learning speed and model quality.

• LR Scheduling: Best to start with a large learning rate and then reduce
it.

29

5. LR Scheduling Strategies

1. Power scheduling (Easy)
• η0: initial rate, t: time in steps, s: number of steps, c: usually 1

• decay = 1/s

2. Exponential scheduling (Good)

3. Piecewise constant scheduling (Difficult)

30

5. LR Scheduling Strategies

4. Performance Scheduling (Good): reduce the learning rate by a
factor of λ when the validation error stops dropping.

5. One-cycle scheduling (Excellent)

31

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

32

6. Avoiding Overfitting

• Deep neural networks typically have many parameters, giving them
ability to fit a huge variety of complex datasets.

• Useful regularization techniques
• Early stopping

• Batch normalization

• ℓ1 and ℓ2 regularization

• Dropout

33

6.1 ℓ1 and ℓ2 Regularization

• Constrain a neural network’s connection weights.

• ℓ1:

• ℓ2:

layer = layers.Dense(100, activation="relu",

kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.l1(0.01))

The other regularization functions:

keras.regularizers.l2(0.01)

keras.regularizers.l1_l2(l1=0.01, l2=0.01)

34

6.2 Dropout

• Popular technique to improve
accuracy.

• At every training step, every
neuron (excluding the output
neurons) has a probability p of
being temporarily dropped out.

35

6.2 Dropout

model = keras.Sequential([

layers.Flatten(input_shape=[28, 28]),

layers.Dropout(rate=0.2),

layers.Dense(300, activation=“relu",

kernel_initializer="he_normal"),

layers.Dropout(rate=0.2),

layers.Dense(100, activation=“relu",

kernel_initializer="he_normal"),

layers.Dropout(rate=0.2),

layers.Dense(10, activation="softmax")

])

36

Outline
1. Introduction
2. Vanishing/Exploding Gradients Problems

• Glorot and He Initialization
• Better Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers
4. Faster Optimizers
5. Learning Rate Scheduling
6. Avoiding Overfitting

• ℓ1 and ℓ2 Regularization
• Dropout

7. Summary
8. Exercise

37

7. Summary

• Recommended default DNN configuration

38

Hyperparameter Default value

Kernel initializer He initialization

Activation function ReLU if shallow; Swish if deep

Normalization None if shallow; batch norm if deep

Regularization Early stopping; weight decay if needed

Optimizer Nesterov accelerated gradients or AdamW

Learning rate schedule Performance scheduling or 1 cycle

7. Summary

• For a simple stack of dense or CNN layers (self-normalizing
net).

39

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Nesterov accelerated gradients

Learning rate schedule Performance scheduling or 1 cycle

8. Exercise
11.8. Practice training a deep neural network on the CIFAR10 image dataset:
a) Build a DNN with 20 hidden layers of 100 neurons each (that’s too many, but it’s the

point of this exercise). Use He initialization and the Swish activation function.
b) Using Nadam optimization and early stopping, train the network on the CIFAR10

dataset. You can load it with keras.datasets.cifar10.load_ data(). The dataset is
composed of 60,000 32 × 32–pixel color images (50,000 for training, 10,000 for
testing) with 10 classes, so you’ll need a softmax output layer with 10 neurons.

c) Now try adding Batch Normalization and compare the learning curves: Is it
converging faster than before? Does it produce a better model? How does it affect
training speed?

d) Try replacing Batch Normalization with SELU and make the necessary adjustments to
ensure the network self-normalizes (i.e., standardize the input features, use LeCun
normal initialization, make sure the DNN contains only a sequence of dense layers,
etc.).

e) Try regularizing the model with alpha dropout.

40

	Slide 1: Deep Neural Networks
	Slide 2: Reference
	Slide 3: Outline
	Slide 4: 1. Introduction
	Slide 5: Outline
	Slide 6: 2. Vanishing/Exploding Gradients Problems
	Slide 7: 2.1 Glorot and He Initialization
	Slide 8: 2.1 Glorot and He Initialization
	Slide 9: 2.1 Glorot and He Initialization
	Slide 10: 2.2 Better Activation Functions
	Slide 11: 2.2 Better Activation Functions
	Slide 12: 2.2 Better Activation Functions
	Slide 13: 2.2 Better Activation Functions
	Slide 14: 2.2 Better Activation Functions
	Slide 15: 2.3 Batch Normalization
	Slide 16: 2.3 Batch Normalization
	Slide 17: 2.4 Gradient Clipping
	Slide 18: Outline
	Slide 19: 3. Reusing Pretrained Layers
	Slide 20: Transfer Learning with Keras
	Slide 21: Transfer Learning with Keras
	Slide 22: Transfer Learning with Keras
	Slide 23: Outline
	Slide 24: 4. Faster Optimizers
	Slide 25: 4. Faster Optimizers
	Slide 26: 4. Faster Optimizers
	Slide 27: 4. Faster Optimizers
	Slide 28: Outline
	Slide 29: 5. Learning Rate Scheduling
	Slide 30: 5. LR Scheduling Strategies
	Slide 31: 5. LR Scheduling Strategies
	Slide 32: Outline
	Slide 33: 6. Avoiding Overfitting
	Slide 34: 6.1 ℓ1 and ℓ2 Regularization
	Slide 35: 6.2 Dropout
	Slide 36: 6.2 Dropout
	Slide 37: Outline
	Slide 38: 7. Summary
	Slide 39: 7. Summary
	Slide 40: 8. Exercise

