
Experimental Design

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

References

- Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
 - Part I: An Overview of Performance Evaluation
 - Part II: Measurement Techniques and Tools
 - Part III: Probability Theory and Statistics
 - Part IV: Experimental Design and Analysis
 - Part V: Simulation

Outline

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs

Introduction and Terminology

Objectives

- Design a proper set of experiments for measurement or simulation.
- Develop a model that best describes the data obtained.
- Estimate the contribution of each alternative to the performance.
- Response Variable: Outcome, e.g., throughput, response time.
- Factors: Variables that affect the response variable, e.g., CPU type, memory size, workload used. Also called predictor variables or predictors.
- Levels: The values that a factor can assume, *e.g.*, the CPU type has three levels: i3, i5, or i7. Also called treatments.

Introduction and Terminology

- Primary Factors: The factors whose effects need to be quantified, *e.g.*, CPU type and memory size only.
- Secondary Factors: Factors whose impact need not be quantified, e.g., the workloads.
- **Replication**: Repetition of all or some experiments.
- Design: The number of experiments, the factor levels, and the number of replications for each experiment.

Introduction and Terminology

• Interaction: When the effect of one factor depends upon the level of the other.

 Table 1: Noninteracting Factors

	A_1	A_2
B_1	3	5
B_2	6	8

 Table 2: Interacting Factors

	A_1	A_2
B_1	3	5
B_2	6	9

Outline

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs

Types of Experimental Designs

1. Simple Designs: Vary one factor at a time.

- Not statistically efficient. $\# \text{ of Experiments} = 1 + \sum_{i=1}^{n} (n_i 1)$
- Wrong conclusions if the factors have interactions.
- Not recommended.

2. Full Factorial Design: All combinations.

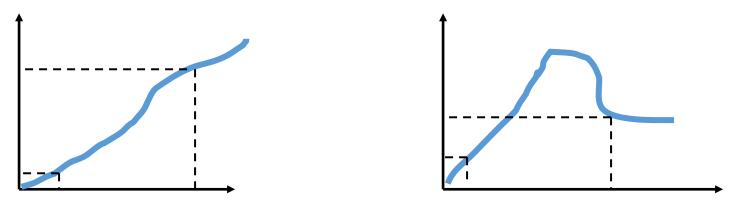
- Can find the effect of all factors.
- Too much time and money.
- May try 2^k design first.

of Experiments =
$$\prod_{i=1}^{\kappa} n_i$$

1.

Types of Experimental Designs

- Fractional Factorial Designs: Less than Full Factorial.
 - Saves time and expense.
 - Less information.
 - May not get all interactions.
 - Not a problem if negligible interactions.
- Example: Workstation Design (3 CPUs)(3 Memory levels) (3 workloads)(3 levels) = 81 experiments!


Experiment	CPU	Memory	Workload	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	$8\mathrm{M}$	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	$8\mathrm{M}$	Managerial	Post-graduate
7	8086	512K	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	$8\mathrm{M}$	Scientific	High School

Outline

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs

2^k Factorial Designs and 2² Example

- *k* factors, each at two levels.
- Easy to analyze.
- Helps in sorting out the impact of factors (sensitivity analysis).
- Good at the beginning of a study.
- Valid only if the effect is **unidirectional**, *e.g.*, memory size, the number of disk drives.

2² Factorial Designs

• Two factors, each at two levels.

<u>Performance in MIPS</u>										
Cache	Memory Size									
Size	4M Bytes	16M Bytes								
1K	15	45								
2K	25	75								

$$x_A = \begin{vmatrix} -1 & \text{if 4M bytes memory} \\ 1 & \text{if 16M bytes memory} \end{vmatrix}$$
$$x_B = \begin{vmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{vmatrix}$$

Model

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$

Observations:

$$15 = q_0 - q_A - q_B + q_{AB}$$

$$45 = q_0 + q_A - q_B - q_{AB}$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

Solution:

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

• Interpretation:

- Mean performance = 40 MIPS
- Effect of memory = 20 MIPS
- Effect of cache = 10 MIPS
- Interaction between memory and cache = 5 MIPS

Computation of Effects

Experiment	А	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$
$$y_1 = q_0 - q_A - q_B + q_{AB}$$
$$y_2 = q_0 + q_A - q_B - q_{AB}$$
$$y_3 = q_0 - q_A + q_B - q_{AB}$$
$$y_4 = q_0 + q_A + q_B + q_{AB}$$

Solution

$$q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$
$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$
$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$
$$q_{AB} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

Sign Table Method

Ι	A	В	AB	У	q_0	q_A	q_B	q_{AB}
1	-1	-1	1	15	15	-15	-15	15
1	1	-1	-1	45	45	45	-45	-45
1	-1	1	-1	25	25	-25	25	-25
1	1	1	1	75	75	75	75	75
				Total	160	80	40	20
				Total/4	40	20	10	5

Allocation of Variation

• Importance of a factor = proportion of the *variation* explained by this factor.

Sample Variance of $y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \bar{y})^2}{2^2 - 1}$

Total Variation of $y = SST = \sum_{i=1}^{\infty} (y_i - \bar{y})^2$

- For a 2² design: $SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2 = SSA + SSB + SSAB$
- Variation due to A = SSA = $2^2 q_A^2$
- Variation due to B = SSB = $2^2 q_B^2$
- Variation due to interaction = SSAB = $2^2 q_{AB}^2$ Fraction explained by A = $\frac{SSA}{SST}$ Vari Variation \neq Variance

Example

- Memory-cache study: $\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$ Total Variation $= \sum_{i=1}^{4} (y_i - \bar{y})^2$ $= (25^2 + 15^2 + 15^2 + 35^2)$ = 2100 $= 4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$
- Total variation (SST) = 2100

Variation due to Memory (SSA) = 1600 (76%)

Variation due to cache (SSB) = 400 (19%)

Variation due to interaction (SSAB) = 100 (5%)

Sign Table Method

у	q_0	q_A	q_B	q_{AB}	
15	15	-15	-15	15	
45	45	45	-45	-45	
25	25	-25	25	-25	
75	75	75	75	75	
Total	160	80	40	20	
Total/4	40	20	10	5	
q ²		400	100	25	
4q ²		1600	400	100	2100
$4q^2/SST$		76%	19%	5%	100%
		SSA	SSB	SSAB	SST

Outline

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs

General 2^k Factorial Designs

• k factors at two levels each.

2^k experiments

2^k effects:

```
k main effects

\begin{pmatrix} k \\ 2 \\ k \\ 3 \end{pmatrix} two factor interactions

\begin{pmatrix} k \\ 3 \end{pmatrix} three factor interactions...
```

$$\binom{n}{k} = rac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

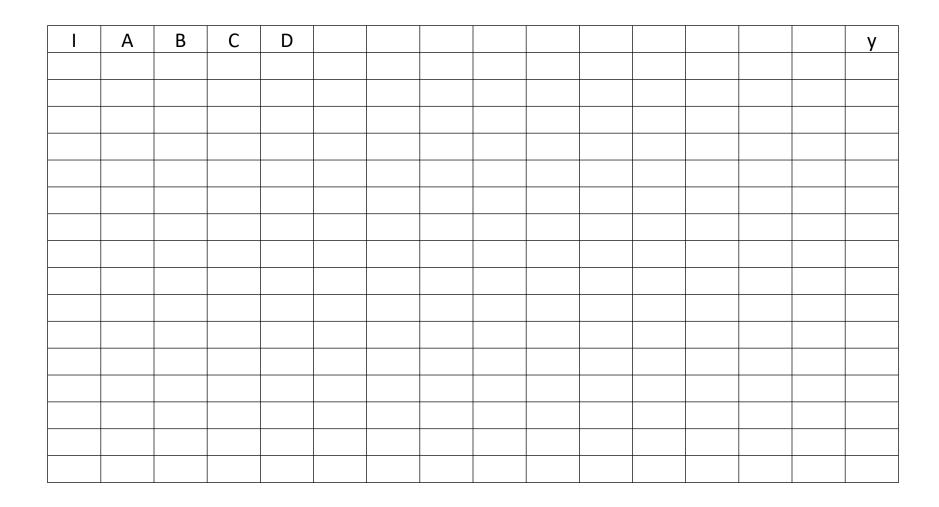
2³ Design Example

- Three factors in designing a machine:
 - Cache size
 - Memory size
 - Number of processors

	Factor	Level -1	Level 1
Α	Memory Size	4MB	16MB
В	Cache Size	1kB	$2\mathrm{kB}$
C	Number of Processors	1	2

2³ Design Example (cont.)

Cache	4M I	Bytes	16M Bytes			
Size	1 Proc	$2 \operatorname{Proc}$	1 Proc	2 Proc		
1K Byte	14	46	22	58		
2K Byte	10	50	34	86		


Ι	А	В	С	AB	AC	BC	ABC	у
1	-1	-1	-1	1	1	1	-1	14
1	1	-1	-1	-1	-1	1	1	22
1	-1	1	-1	-1	1	-1	1	10
1	1	1	-1	1	-1	-1	-1	34
1	-1	-1	1	1	-1	-1	1	46
1	1	-1	1	-1	1	-1	-1	58
1	-1	1	1	-1	-1	1	-1	50
1	1	1	1	1	1	1	1	86
320	80	40	160	40	16	24	9	Total
40	10	5	20	5	2	3	1	Total/8

2³ Design Example (cont.)

SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

= $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$
= $800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512$
= $18\% + 4\% + 71\% + 4\% + 1\% + 2\% + 0\%$
= 100%

• Number of Processors (C) is the most important factor.

2⁴ Design Example

2⁴ Design Example

I	Α	В	С	D	AB	AC	AD	BC	BD	CD	ABC	ABD	BCD	ABCD	У
1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	1	y1
1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	y2
1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	уЗ
1	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	y4
1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	y5
1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	1	y6
1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	1	у7
1	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	y8
1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	-1	y9
1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	1	1	y10
1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	y11
1	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	y12
1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1	y13
1	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	-1	-1	y14
1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	y15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	y16

Outline

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs

Other Designs

- 2^kr Factorial Designs with Replications: Good for estimating the experimental errors.
- 2^{k-p} Fractional Factorial Designs: Requires fewer experiments, but with confounding: Some of the effects and interactions cannot be separated.
- One-Factor Experiment: Used to compare several alternatives of a single categorical variable.
- Two-factor Full Factorial Design Without Replications
- Two-factor Full Factorial Design with Replications
- General Full Factorial Designs with k Factors

Summary

- Introduction and Terminology
- Types of Experimental Design
- 2^k Factorial Designs and 2² Example
- General 2^k Factorial Designs
- Other Designs