

Summarizing Measured Data

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

References

- Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
 - Part I: An Overview of Performance Evaluation
 - Part II: Measurement Techniques and Tools
 - Part III: Probability Theory and Statistics
 - Part IV: Experimental Design and Analysis
 - Part V: Simulation

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion

Mean, Median, and Mode

Are called indices of central tendencies.

• Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Median is obtained by sorting the observations and taking the observation that is in the middle of the series.
- Mode is obtained by plotting a histogram and specifying the midpoint of the bucket where the histogram peaks. For categorical variables, mode is given by the category that occurs most frequently.

Relationships

- Mean and median always exist and are unique.
- Mode, on the other hand, may not exist or may not be unique.

Selecting Mean, Median, and Mode

Examples

1. Used resources in a system

• Resources are categorical and hence **mode** must be used.

2. Interarrival time of service requests

- Total time is of interest and so **mean** is the proper choice.
- 3. Load on a computer
 - Median is preferable due to a highly skewed distribution.
- 4. Average configuration of many computers
 - Medians of number devices, memory sizes, number of processors are generally used to specify the configuration due to the skewness of the distribution.

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion

Common Misuses of Means

- 1. Using mean of significantly different values
 - (10+1000)/2 = 505
- 2. Using mean without regard to the **skewness of distribution**.

System A	System B
10	5
9	5
11	5
10	4
10	31
Sum=50	Sum=50
Mean=10	Mean=10
Typical=10	Typical= 5

Common Misuses of Means (cont.)

3. Multiplying means to get the mean of a product

 $E(xy) \neq E(x)E(y)$

	A	В	AB
	2	5	10
	3	6	18
	4	7	28
Average	3	6	18.7

- 4. Taking a mean of a ratio with different bases
 - Already discussed in ratio games

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion

Geometric Mean

• Is used if the product of the observations is a quantity of interest.

$$\dot{x} = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$$

	Protocol	Performance
	Layer	Improvement
	7	18%
• Example : The performance improvements in 7 layers:	6	13%
	5	11%
Average improvement per layer	4	8%
$-\int (1 \ 18)(1 \ 13)(1 \ 11)(1 \ 08)(1 \ 10)(1 \ 28)(1 \ 05) \left\{ \frac{1}{7} - 1 \right\}$	3	10%
$- \left((1.10)(1.10)(1.11)(1.00)(1.10)(1.20)(1.00) \right)^{-1} = 1$	2	28%
= 0.13	1	5%

Examples of Multiplicative Metrics

- 1. Cache hit ratios over several levels of caches
- 2. Percentage performance improvement between successive versions
- 3. Average error rate per hop on a multi-hop path in a network

Geometric Mean of Ratios

• The **geometric mean of a ratio** is the **ratio** of the geometric means of the **numerator** and **denominator**.

$$gm(\frac{x_1}{y_1}, \frac{x_2}{y_2}, \dots, \frac{x_n}{y_n}) = \frac{gm(x_1, x_2, \dots, x_n)}{gm(y_1, y_2, \dots, y_n)} = \frac{\frac{1}{gm(\frac{y_1}{x_1}, \frac{y_2}{x_2}, \dots, \frac{y_n}{x_n})}$$

- The choice of the **base** in relative performance **does not change the conclusion** when comparing two systems.
- Therefore, the geometric mean is **recommended for relative performance**, *e.g.*, SPEC CPU benchmark.

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion

Harmonic Mean

• Used whenever an arithmetic mean can be justified for 1/x,

$$\dot{x} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

- Example: MIPS of a benchmark on a processor
- In the *i*-th repetition, the benchmark takes t_i seconds. Now suppose the benchmark has *m* million instructions, MIPS x_i computed from the *i*-th repetition is: $x_i = \frac{m}{t_i}$
- t_i 's should be summarized using arithmetic mean since the sum of t_i has a physical meaning => x_i 's should be summarized using harmonic mean since the sum of $1/x_i$'s has a physical meaning.

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio
 - Four cases

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion

Mean of a Ratio

- 1. If the **sum of numerators** and the **sum of denominators**, both **have physical meanings**, the average of the ratio is the **ratio of the averages**.
 - For $x_i = a_i / b_i$, the average ratio is given by:

Average
$$(\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}) = \frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n}$$

$$= \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$$
$$= \frac{\frac{1}{n} \sum_{i=1}^n a_i}{\frac{1}{n} \sum_{i=1}^n b_i} = \frac{\bar{a}}{\bar{b}}$$

- Example: CPU utilization
- Note: Ratios cannot always be summarized by a geometric mean. A geometric mean of utilizations is useless.

Mean CPU

Measurement	CPU
Duration	Busy
1	45%
1	45%
1	45%
1	45%
100	20%
Sum	200
Mean	$\neq 200/5 \text{ or } 40\%$

utilization $=$		Sum of CPU busy times
	Sum of measurement durations	
		$\underline{0.45 + 0.45 + 0.45 + 0.45 + 20}$
		1 + 1 + 1 + 1 + 100
	=	21%

2. If the **denominator is a constant** and the **sum of numerator** has a **physical meaning**, the **arithmetic mean** of the ratios can be used.

That is, if $b_i = b$ for all *i*'s, then:

Average
$$\left(\frac{a_1}{b}, \frac{a_2}{b}, \cdots, \frac{a_n}{b}\right)$$

= $\frac{1}{n} \left(\frac{a_1}{b} + \frac{a_2}{b} + \cdots + \frac{a_n}{b}\right)$
= $\frac{\sum_{i=1}^n a_i}{nb}$

Example: Mean resource utilization over same period

That

3. If the sum of the denominators has a physical meaning and the numerators are constant, then a harmonic mean of the ratio should be used to summarize them.

is, if
$$a_i = a$$
 for all *i*'s, then:
Average $\left(\frac{a}{b_1}, \frac{a}{b_2}, \cdots, \frac{a}{b_n}\right) = \frac{n}{\frac{b_1}{a} + \frac{b_2}{a} + \cdots + \frac{b_n}{a}}$
 $= \frac{na}{\sum_{i=1}^n b_i}$

Example: MIPS using the same benchmark (see Harmonic Mean)

4. If the numerator and the denominator are expected to follow a multiplicative property such that $a_i = c \times b_i$, where *c* is approximately a constant that is being estimated, then *c* can be estimated by the geometric mean of a_i / b_i .

Example: Program optimizer Where, b_i and a_i are the sizes before and after the program optimization and c is the effect of the optimization, which is expected to be independent of the code size.

Code Size			
Program	Before	After	Ratio
BubbleP	119	89	0.75
IntmmP	158	134	0.85
PermP	142	121	0.85
PuzzleP	8612	7579	0.88
QueenP	7133	7062	0.99
QuickP	184	112	0.61
SieveP	2908	2879	0.99
TowersP	433	307	0.71
Geometric	e Mean		0.79 22

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

• Summarizing Variability

- Range
- Variance
- Percentiles
- Semi Inter-Quartile Range
- Mean Absolute Deviation
- Selecting the Index of Dispersion

Summarizing Variability

"Then there is the man who drowned crossing a stream with an average depth of six inches."

- W. I. E. Gates

Indices of Dispersion

- 1. Range
- 2. Variance
- 3. Percentiles
- 4. Semi inter-quartile range
- 5. Mean absolute deviation

1. Range

• Range = Max - Min

- Larger range => higher variability
- In most cases, range is not very useful; the minimum often comes out to be zero and the maximum comes out to be an "outlier" far from typical values.
- Unless the variable is bounded, the maximum goes on increasing with the number of observations and the minimum goes on decreasing.
- Range is **useful** if, and only if, the **variable is bounded**.

2. Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$

- The variance is expressed in units which are square of the units of the observations.
 - => It is preferable to use **standard deviation** *s*.
- Coefficient of variation (COV) = s/\bar{x} is even better because it takes the scale of measurement (unit of measurement) out of variability consideration.

3. Percentiles

- A k-th percentile is a score below which a given percentage k of scores falls at or below which a given percentage falls.
- Specifying the 5-percentile and the 95-percentile of a variable has the same impact as specifying its minimum and maximum.
- It can be done for any variable, even for variables without bounds.

3. Percentiles (cont.)

- When expressed as a fraction α between 0 and 1 (instead of a percent), the percentiles are also called quantiles.
 => 0.9-quantile is the same as 90-percentile.
- Fractile = quantile
- The percentiles at multiples of 10% are called deciles. Thus, the first decile is 10-percentile, the second decile is 20-percentile, and so on.

4. Semi Inter-Quartile Range

- Quartiles divide the data into four parts at 25%, 50%, and 75%.
 - 25% of the observations are \leq the first quartile Q_1
 - 50% are \leq the second quartile Q_2
 - 75% are \leq the third quartile Q_3
- Notice that the second quartile Q_2 is also the median.
- Inter-quartile range = $Q_3 Q_1$
- Semi inter-quartile range (SIQR)

$$SIQR = \frac{Q_3 - Q_1}{2} = \frac{x_{0.75} - x_{0.25}}{2}$$

How to Find a Quantile?

- The α-quantiles can be estimated by sorting the observations and taking the [(n-1)α+1]-th element in the ordered set. Here, [.] is used to denote rounding to the nearest integer.
- For quantities exactly half-way between two integers use the lower integer.

Example

- In an experiment, which was repeated 32 times, the measured CPU time was found to be {3.1, 4.2, 2.8, 5.1, 2.8, 4.4, 5.6, 3.9, 3.9, 2.7, 4.1, 3.6, 3.1, 4.5, 3.8, 2.9, 3.4, 3.3, 2.8, 4.5, 4.9, 5.3, 1.9, 3.7, 3.2, 4.1, 5.1, 3.2, 3.9, 4.8, 5.9, 4.2}.
- The sorted set is {1.9, 2.7, 2.8, 2.8, 2.8, 2.9, 3.1, 3.1, 3.2, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 3.9, 3.9, 4.1, 4.1, 4.2, 4.2, 4.4, 4.5, 4.5, 4.8, 4.9, 5.1, 5.1, 5.3, 5.6, 5.9}.
- **10-percentile** = [1+(31)(0.10)] = 4th element = 2.8
- **90-percentile** = [1+(31)(0.90)] = 29th element = 5.1
- First quartile $Q_1 = [1+(31)(0.25)] = 9$ th element = 3.2
- Median Q_2 = [1+(31)(0.50)] = 16th element = 3.9
- Third quartile $Q_3 = [1+(31)(0.75)] = 24$ th element = 4.5 SIQR = $\frac{Q_3 - Q_1}{2} = \frac{4.5 - 3.2}{2} = 0.65$

5. Mean Absolute Deviation

Mean absolute deviation
$$= \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

• Fast to calculate as no multiplication or square root is required.

Outline

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

• Summarizing Variability

- Range
- Variance
- Percentiles
- Semi Inter-Quartile Range
- Mean Absolute Deviation
- Selecting the Index of Dispersion

Selecting the Index of Dispersion

Comparison of Variation Measures

- **Range** is affected considerably by outliers.
- Variance is also affected by outliers, but the affect is less.
- Mean absolute deviation is next in resistance to outliers.
- Semi inter-quartile range is very resistant to outliers.
- In general, SIQR is used as an index of dispersion whenever median is used.
- For categorical data, the dispersion can be specified by giving the number of most frequent categories that comprise the given percentile, *e.g.*, top 90%.

Summary

- Summarizing Data by a Single Number
 - Mean, Median, and Mode
 - Common Misuses of Means
 - Geometric Mean
 - Harmonic Mean
- Mean of a Ratio

- Summarizing Variability
 - Range
 - Variance
 - Percentiles
 - Semi Inter-Quartile Range
 - Mean Absolute Deviation
 - Selecting the Index of Dispersion