

Workloads

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

References

- Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
 - Part I: An Overview of Performance Evaluation
 - Part II: Measurement Techniques and Tools
 - Part III: Probability Theory and Statistics
 - Part IV: Experimental Design and Analysis
 - Part V: Simulation

Outline

- Terminology
- Types of Workloads
 - 1. Single Operation
 - 2. Mixture of Operations
 - 3. Kernels
 - 4. Synthetic Programs
 - 5. Application Benchmarks
- Workload Selection
- Workload Characterization
- Monitors

Terminology

- Test workload: Any workload used in performance studies; it can be real or synthetic.
- Real workload: Observed on a system being used for normal operations.
- Synthetic workload
 - Synthesized to behave like real workload
 - Can be applied repeatedly in a controlled manner
 - May have built-in measurement capabilities
 - Does not have large, real-world, sensitive data files
 - Can be easily modified to scale the workload
 - Can be easily ported to different systems due to its small size

Test Workloads for Computer Systems

- 1. Single Operation
- 2. Mixture of Operations
- 3. Kernels
- 4. Synthetic Programs
- 5. Application Benchmarks

1. Single Operation

Example: Addition Instruction

- Processors were the most expensive and most used components of the system.
- Addition was the most frequent instruction.
- One operation can be used for fast and simple evaluation.

2. Mixture of Operations

Example: Instruction Mixes

- Instructions + usage frequency
- Gibson mix: Developed by Jack Gibson in 1959 for IBM 704 systems.

Performance Metrics

- MIPS = Millions of instructions per second
- MFLOPS = Millions of floating-point operations per second

1.	Load and Store	31.2
2.	Fixed-Point Add and Subtract	6.1
3.	Compares	3.8
4.	Branches	16.6
5.	Floating Add and Subtract	6.9
6.	Floating Multiply	3.8
7.	Floating Divide	1.5
8.	Fixed-point Multiply	0.6
9.	Fixed-point Divide	0.2
10.	Shifting	4.4
11.	Logical, And, Or, etc.	1.6
12.	Instructions Not Using Registers	5.3
13.	Indexing	18.0
	Total	100.0

3. Instruction Mixes

Disadvantages

- 1. Complex classes of instructions are not reflected in the mixes.
- 2. Does not account for instruction time variance due to:
 - Various addressing modes
 - Cache hits and misses
 - Interference from other devices
 - *etc*.

3. Kernels

- Kernels are **short functions that are frequently executed**.
- Examples
 - Tree search
 - Sorting
 - Matrix multiplication
- Advantage: Exercise the processor and memory
- **Disadvantage**: Do not exercise the I/O devices

4. Synthetic Programs

- Programs to exercise various aspects of the computer system.
- To measure I/O performance, analysts developed Exerciser Loops.
- The first exerciser loop was by Buchholz (1969) who called it a synthetic program.

4. Synthetic Programs

Advantages

- Quickly developed
- No real data files
- Easily modified and ported to different systems
- Have built-in measurement capabilities

Disadvantages

- Too small
- Do not make representative memory or disk references
- Complex interactions such as page faults and disk cache may not be adequately exercised
- CPU-I/O overlap may not be representative

3. Application Benchmarks

- Real applications selected and packaged for efficient and standard performance evaluation.
- Example Benchmarks
 - SPEC: CPU
 - TPC: Servers
 - Heaven UNIGINE: GPU
 - **PMLB**: Machine Learning

SPEC Benchmarks

- **SPEC**: Systems Performance Evaluation Cooperative is a non-profit corporation formed by leading computer vendors to develop a standardized set of benchmarks.
- <u>www.spec.org</u>
- SPEC CPU 2017 designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, contains four benchmark suites:
 - SPECspeed 2017: integer and FP
 - SPECrate 2017: integer and FP

SPEC CPU 2017

	Calculating SPECspeed Metrics		Calculating SPECrate Metrics
•	1 copy of each benchmark in a suite is run.	•	The tester chooses how many concurrent copies to run
•	The tester may choose how many OpenMP threads to use.	•	OpenMP is disabled.
•	For each benchmark, a performance ratio is calculated as: Time on a reference machine / time on the SUT	•	For each benchmark, a performance ratio is calculated as: Number of copies × (time on a reference machine / time on the SUT)
•	Higher scores mean that less time is needed.	•	Higher scores mean that more work is done per unit of time.

SPEC CPU 2017

Calculating SPECspeed Metrics	Calculating SPECrate Metrics	
Example	Example	
• The reference machine ran	• The reference machine ran 1 copy of	
 A particular SUT took 354.3 seconds 	 A particular SUT ran 8 copies in 541.5 	
to run one copy.	seconds.	
 SPECspeed = 1775/354.3 = 5.01 	 SPECrate = 8×(1592/541.5) = 23.5 	

TPC Benchmarks

- Transaction Processing Performance Council
- http://www.tpc.org/
- Developed many benchmarks:
 - TPC-A (Obsolete)
 - TPC-B (Obsolete)
 - TPC-C
 - **ТРС-Е**
 - TPC-H
 - TPC-Energy

TPC-C

- Simulates a complete computing environment where a population of users executes transactions against a database.
- TPC-C performance is measured in **new-order transactions per minute**.
- The primary metrics are the transaction rate (tpmC), and the associated price per transaction (\$/tpmC).

TPC-E

- Uses a database to model a **brokerage firm** with customers who generate transactions related to trades, account inquiries, and market research.
- The brokerage firm in turn interacts with financial markets to execute orders on behalf of the customers and updates relevant account information.
- The TPC-E metric is given in transactions per second (tps).

TPC-H

- Is a decision support benchmark. It consists of a suite of business-oriented ad-hoc queries and concurrent data modifications.
- The performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric
 (QphH@Size) for a specific database size.
- The TPC-H Price/Performance metric is expressed as \$/QphH@Size.

TPC-Energy

• Contains the rules and methodology for measuring and reporting an **energy metric** in TPC Benchmarks.

• This includes the energy consumption of system components associated with typical business information technology environments.

Outline

- Terminology
- Types of Workloads
 - 1. Single Operation
 - 2. Mixture of Operations
 - 3. Kernels
 - 4. Synthetic Programs
 - 5. Application Benchmarks
- Workload Selection
- Workload Characterization
- Monitors

Workload Selection

Considerations

- 1. Services exercised
- 2. Level of detail
- 3. Loading level
- 4. Representativeness
- 5. Timeliness
- 6. Repeatability

1. Services Exercised

• The workload selected depends upon the system under test (SUT).

• Examples

- CPU: Instructions
- System: Transactions
- Two systems identical except for CPU
 - Comparing Systems: Use transactions
 - Comparing CPUs: Use instructions
- For SUT providing multiple services, exercise as **complete a set of services** as possible.

2. Level of Detail

- Most frequent request
 - Valid if one service is much more frequent than others
- Frequency of request types
 - Example: Instruction mixes
- Time-stamped sequence of requests
 - May be too detailed
 - Not convenient for analytical modeling
- Average resource demand
 - Used for analytical modeling
- Distribution of resource demands
 - Used if the distribution has large variance and impacts the performance

3. Loading Level

- A workload may exercise a system in:
 - Best case: Full capacity
 - Worst case: Beyond its capacity
 - Typical case: At the load level observed in real workload
- For procurement purposes ⇒ Use typical case
- For **design purposes** \Rightarrow Use all cases

Other Considerations

- 4. **Representativeness**: The test and real workloads should have same characteristics, *e.g.*, elapsed time and resource demands.
- 5. **Timeliness**: The test workload should be current.
 - Users are a moving target.
 - Users tend to optimize the demand, *e.g.*, given fast multiplication ⇒ Higher frequency of multiplication instructions.
 - Important to monitor user behavior on an ongoing basis.
- 6. **Repeatability**: The test workload can be easily used in successive evaluation experiments with repeatable results.

Outline

- Terminology
- Types of Workloads
 - 1. Single Operation
 - 2. Mixture of Operations
 - 3. Kernels
 - 4. Synthetic Programs
 - 5. Application Benchmarks
- Workload Selection
- Workload Characterization
- Monitors

Workload Characterization

- Workload features: Measured quantities of service requests or resource demands, *e.g.*, transaction types, instructions, packet sizes, source-destinations of a packet, and page reference pattern.
- Do not use parameters that depend upon the system, e.g., the elapsed time and CPU time.
- Features of service requests
 - Arrival time
 - Type of request or the resource demanded
 - Quantity of the resource demanded, *e.g.*, pages of memory

Outline

- Terminology
- Types of Workloads
 - 1. Single Operation
 - 2. Mixture of Operations
 - 3. Kernels
 - 4. Synthetic Programs
 - 5. Application Benchmarks
- Workload Selection
- Workload Characterization
- Monitors

Monitors

- A monitor is a tool used to observe the activities on a system.
- Useful for:
 - Characterizing workloads
 - Software optimization
 - Finding bottlenecks
- Event is a change in the system state.
- Trace is a log of events usually including event times.
- Monitors often have overheads.

Monitor Types

Trigger type

- Event driven: Good for infrequent events
- Timer driven (sampling): Good for frequent events

Results displaying

- Online
- Batch

Implementation

• Software, hardware, firmware, and hybrid

HW and SW Monitors

- Hardware Monitors
 - Timers
 - Counters
 - Probes
 - Logic analyzers

• **Software Monitors**: Activation mechanism:

- Trap instruction
- Trace mode; interrupt after every instruction
- Timer interrupt (resolution problem)

Comparison

Criterion	Hardware monitor	Software monitor
Domain	HW events	Application and OS events
Input rate	High	Low
Time resolution	High	Low
Overhead	None	Varies

Summary

- Terminology
- Types of Workloads
 - 1. Single Operation
 - 2. Mixture of Operations
 - 3. Kernels
 - 4. Synthetic Programs
 - 5. Application Benchmarks
- Workload Selection
- Workload Characterization
- Monitors