

1

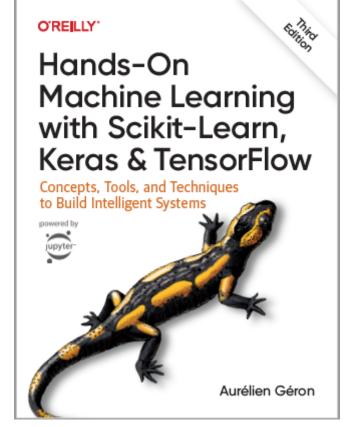
Neural Networks

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

Chapter 10: Introduction to Artificial Neural Networks with Keras



- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 3rd Edition, 2022
 - Material: https://github.com/ageron/handson-ml3

Introduction

• YouTube Video: *But what *is* a Neural Network?* from 3Blue1Brown

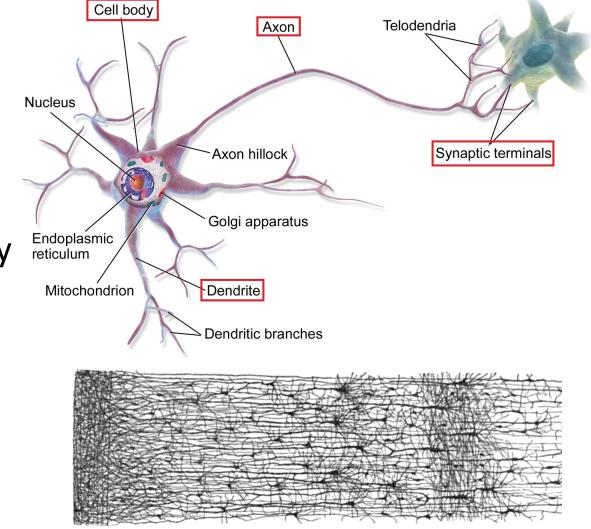
https://youtu.be/aircAruvnKk

Outline

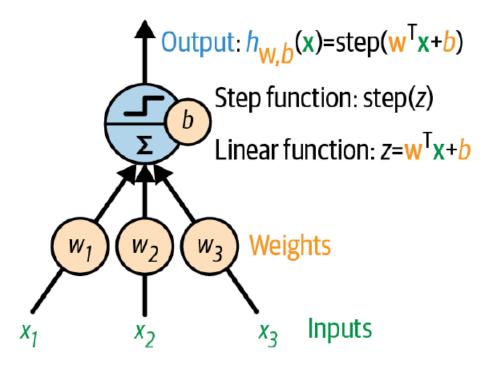
- 1. Introduction
- 2. The perceptron
- 3. Multi-layer perceptron (MLP)
- 4. Regression MLPs
- 5. Classification MLPs

1. Introduction

- Artificial neural networks (ANNs) are inspired by the brain's architecture.
- First suggested in 1943. Is now **flourishing** due to the availability of:
 - Data
 - Computing power
 - Better algorithms



• The **Perceptron** is a simple ANN, invented in 1957 and can perform linear binary classification or regression. Linear threshold unit (LTU)

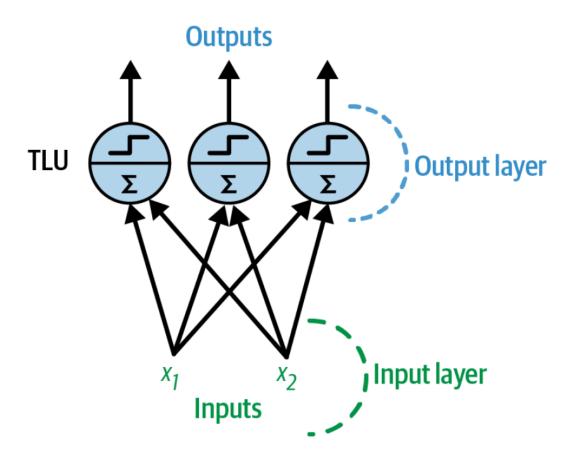


• Common step function:

heaviside
$$(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$
 sgn $(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$

- The Perceptron has an **input** layer with bias and output layer.
- With **multiple output nodes**, it can perform multiclass classification.
- Hebbian learning "Cells that fire together, wire together."

$$w_{i,j}^{\text{(next step)}} = w_{i,j} + \eta \left(y_j - \hat{y}_j \right) x_i$$



• Scikit-Learn provides a Perceptron class.

```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron
```

```
iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 0) # Iris setosa
```

```
per_clf = Perceptron(random_state=42)
per_clf.fit(X, y)
```

```
X_new = [[2, 0.5], [3, 1]]
y_pred = per_clf.predict(X_new) # predicts True and False for these 2 flowers
```

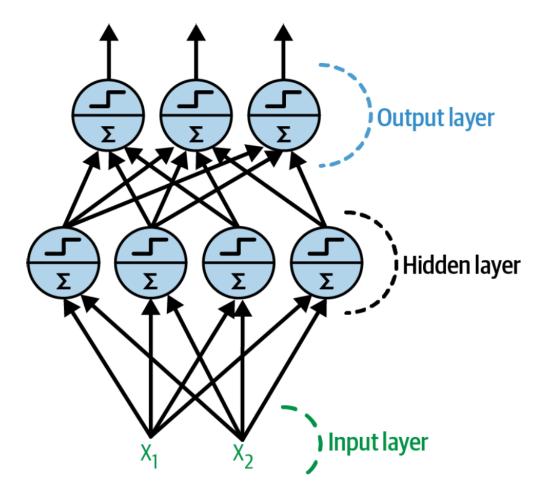
- The perceptron cannot solve non-linear problems such as the XOR problem.
- The Multi-Layer Perceptron (MLP) can. TLU 0.

Outline

- 1. Introduction
- 2. The perceptron
- 3. Multi-layer perceptron (MLP)
- 4. Regression MLPs
- 5. Classification MLPs

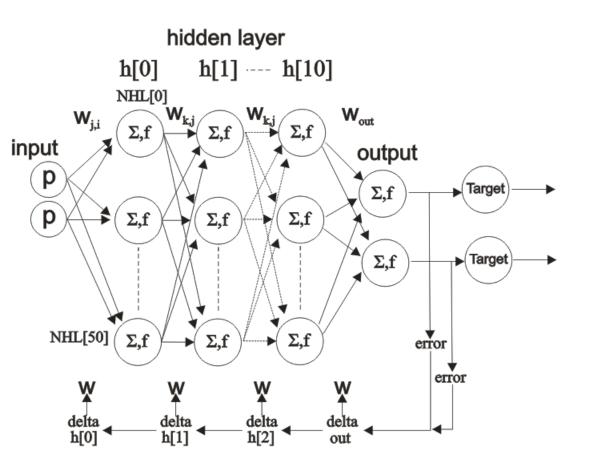
3. Multi-Layer Perceptron (MLP)

- An MLP is composed of a (passthrough) input layer, one or more layers of LTUs, called hidden layers, and a final layer of LTUs called the output layer.
- When an ANN has two or more hidden layers, it is called a deep neural network (DNN).



3. Multi-Layer Perceptron (MLP)

- Trained using the **backpropagation training algorithm**.
 - For each training instance the algorithm first makes a prediction (forward pass), measures the error,
 - then goes through each layer in reverse to measure the error contribution from each connection (reverse pass),
 - and finally slightly tweaks the connection weights to reduce the error (Gradient Descent step).

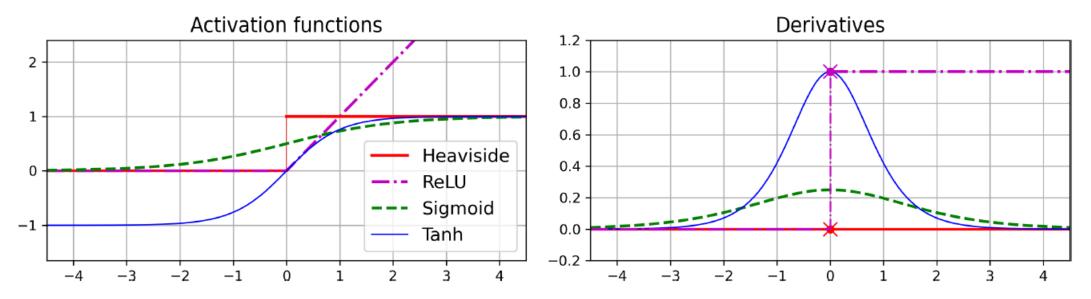


3. Multi-Layer Perceptron (MLP)

• Common activation functions: logistic, hyperbolic tangent, and rectified linear unit.

$$\sigma(z) = 1 / (1 + \exp(-z))$$

 $tanh(z) = 2\sigma(2z) - 1$
ReLU(z) = max (0, z)



Outline

- 1. Introduction
- 2. The perceptron
- 3. Multi-layer perceptron (MLP)
- 4. Regression MLPs
- 5. Classification MLPs

4. Regression MLPs

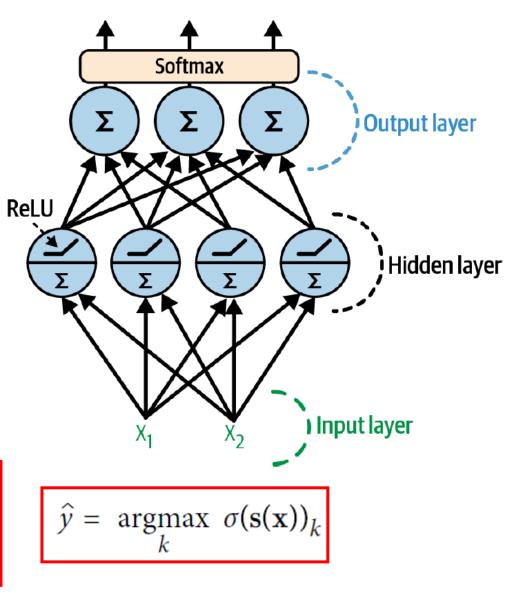
• Typical MLP architecture for **regression**:

Hyperparameter	Typical value		
# hidden layers	Depends on the problem, but typically 1 to 5		
# neurons per hidden layer	Depends on the problem, but typically 10 to 100		
# output neurons	1 per prediction dimension		
Hidden activation	ReLU		
Output activation	None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded outpu		
Loss function	MSE, or Huber if outliers		

5. Classification MLPs

- For classification, the output layer uses the softmax function.
- The output of each neuron corresponds to the estimated probability of the corresponding class.

$$\hat{p}_{k} = \sigma(\mathbf{s}(\mathbf{x}))_{k} = \frac{\exp(s_{k}(\mathbf{x}))}{\sum_{j=1}^{K} \exp(s_{j}(\mathbf{x}))}$$



5. Classification MLPs

• Typical MLP architecture for **classification**:

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
# hidden layers	Typically 1 to 5 layers, depending on the task		
# output neurons	1	1 per binary label	1 per class
Output layer activation	Sigmoid	Sigmoid	Softmax
Loss function	X-entropy	X-entropy	X-entropy

Summary

- 1. Introduction
- 2. The perceptron
- 3. Multi-layer perceptron (MLP)
- 4. Regression MLPs
- 5. Classification MLPs