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Reference

• Chapter 5: Support Vector Machines

• Chapter 6: Decision Trees

• Chapter 7: Ensemble Learning and
Random Forests

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 3rd Edition, 2022
• Material: https://github.com/ageron/handson-ml3
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k-Nearest Neighbors

• Find a predefined number of training samples (k) closest in distance to 
the new point and predict the label from them: regression or 
classification.

• The number of samples can be a user-defined constant (k-nearest 
neighbor learning) or vary based on the local density of points (radius-
based neighbor learning).

• The distance can be any metric measure: standard Euclidean distance
is the most common choice.

• Reference: https://scikit-learn.org/stable/modules/neighbors.html
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Nearest Neighbors Classification

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, 
weights='uniform', … )

• weights can be: uniform: All points in each neighborhood are 
weighted equally, and distance: Weight points by the inverse of their 
distance.

• Example:
from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()

knn_clf.fit(X_train, y_train)
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Nearest Neighbors Regression

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, 
weights='uniform', … )

• The label assigned to a query point is computed based on the mean 
of the labels of its nearest neighbors.

• Example:
from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(n_neighbors=3)

model.fit(X, y)
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Support Vector Machine (SVM)

• Very powerful and versatile Machine Learning model, capable of 
performing linear or nonlinear classification, regression, and outlier 
detection.

• Well suited for classification of complex but small- or medium-sized
datasets.

• SVM gives large margin classification.
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Linear SVM Classification

• The decision boundary is fully determined by the instances located 
on the edge. These instances are called the support vectors.

• SVMs are sensitive to the feature scales.

9



Soft Margin Classification

• Hard margin classification cannot handle linearly inseparable classes 
and is sensitive to outliers.

• Soft margin classification finds a balance between keeping the 
margin as large as possible and limiting the margin violations.
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Soft Margin Classification

• You can control the number of violations using the C hyperparameter.

• If your SVM model is overfitting, you can try regularizing it by 
reducing C.
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Iris Dataset
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• A famous dataset that contains 
the sepal and petal length and 
width of 150 iris flowers of 
three different species: Setosa, 
Versicolor, and Virginica.



SVM Classification Example
from sklearn.datasets import load_iris

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.svm import LinearSVC

iris = load_iris(as_frame=True)

X = iris.data[["petal length (cm)",

"petal width (cm)"]].values

y = (iris.target == 2) # Iris virginica

svm_clf = make_pipeline(StandardScaler(),

LinearSVC(C=1, random_state=42))

svm_clf.fit(X, y) 13

>>> X_new = [[5.5, 1.7], [5.0, 1.5]]

>>> svm_clf.predict(X_new)

array([ True, False])

>>> svm_clf.decision_function(X_new)

array([ 0.66163411, -0.22036063])



Nonlinear SVM Classification

• The SVM class supports nonlinear classification using the kernel
option.
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Controls how much the model is 
influenced by high-degree polynomials 

versus low-degree



Gaussian Radial Basis Function 

• The Gaussian RBF can be used to find similarity features (x2 and x3 ) 
of the one-dimensional dataset with two landmarks to it at x1 = –2 
and x1 = 1
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Gaussian RBF Kernel

• Is popular with SVM to solve nonlinear problems.

• Transforms a training set with m instances and n features to m
instances and m features.

• gamma and C are used for regularization with smaller values.
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Gaussian RBF Kernel
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Linear SVM Regression

• Fits as many instances as possible on the margin while limiting margin 
violations. The width of the street is controlled by a hyperparameter ϵ.
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Nonlinear SVM Regression
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SVM Conclusion

• The LinearSVC has complexity of 𝑂 𝑚 × 𝑛 .

• The SVC time complexity is usually between 𝑂 𝑚2 × 𝑛 and 
𝑂 𝑚3 × 𝑛 .

• This algorithm is perfect for complex but small or medium training 
sets. However, it scales well with the number of features.
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Decision Trees

• Decision Trees are versatile Machine Learning algorithms that can 
perform both classification and regression tasks, and even 
multioutput tasks.

• They are very powerful algorithms, capable of fitting complex 
datasets.

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)

X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values

y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)

tree_clf.fit(X_iris, y_iris)
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Visualizing a Decision Tree
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Visualizing a Decision Tree
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Regularization Hyperparameters

• Increase min_* or decrease max_*: max_depth=None, 
min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, 
max_leaf_nodes=None
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Decision Trees Regression

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X, y)
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Ensemble Learning and Random Forests

• A group of predictors is called an ensemble.

• You can train a group of Decision Tree classifiers, each on a different 
random subset of the training set.

• To make predictions, obtain the predictions of all individual trees, 
then predict the class that gets the most votes (hard voting),

• or predict the class with the highest-class probability (soft voting).

• Such an ensemble of Decision Trees is called a Random Forest.
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Voting Classifiers

• If each classifier is a weak learner (meaning it does only slightly 
better than random guessing), the ensemble can be a strong learner 
(achieving high accuracy).
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Scikit-Learn Voting Classifier  1/2
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Scikit-Learn Voting Classifier  2/2

31



Bagging and Pasting

• Use the same training algorithm for every predictor but train them 
on different random subsets of the training set.

• When sampling is performed with replacement, this method is called 
bagging (short for bootstrap aggregating).

• When sampling is performed without replacement, it is called 
pasting.

• The aggregation function is the most frequent prediction (hard 
voting) for classification, highest probability (soft voting), or the 
average for regression.
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Bagging Demonstration
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Bagging and Pasting
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Use all available cores



Random Forests

• An ensemble of Decision Trees trained via the bagging with 
max_samples set to the size of the training set and choosing the best 
random splits.

• Equivalent to:
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It samples 𝑛 features.
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Exercises

1. Train and fine-tune an SVM regressor on the California housing 
dataset. You can use the original dataset rather than the tweaked 
version we used in Chapter 2, which you can load using 
sklearn.datasets.fetch_california_housing(). The targets 
represent hundreds of thousands of dollars. Since there are over 
20,000 instances, SVMs can be slow, so for hyperparameter tuning 
you should use far fewer instances (e.g., 2,000) to test many more 
hyperparameter combinations. What is your best model’s RMSE?
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Exercises

2. Train and fine-tune a Decision Tree for the moons dataset.
a) Generate a moons dataset using make_moons(n_samples=10000, 

noise=0.4).

b) Split it into a training set and a test set using train_test_split().

c) Use grid search with cross-validation (with the help of the GridSearchCV class) 
to find good hyperparameter values for a DecisionTreeClassifier. Hint: try 
various values for max_leaf_nodes.

d) Train it on the full training set using these hyperparameters, and measure your 
model’s performance on the test set. You should get roughly 85% to 87% 
accuracy.
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Exercises

3. Load the MNIST dataset and split it into a training set and a test set 
(take the first 60,000 instances for training, and the remaining 
10,000 for testing). Train a random forest classifier on the dataset 
and time how long it takes, then evaluate the resulting model on 
the test set. 
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