

Training Models and Regression

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

• Chapter 4: Training Models



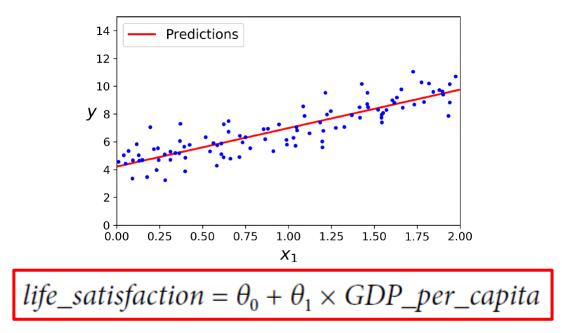
- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 3rd Edition, 2022
 - Material: https://github.com/ageron/handson-ml3

- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

Linear Regression

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- \hat{y} is the predicted value.
- *n* is the number of features.
- x_i is the ith feature value.



• θ_j is the jth model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

$$\hat{y} = h_{\theta}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$$

Analytical Solution

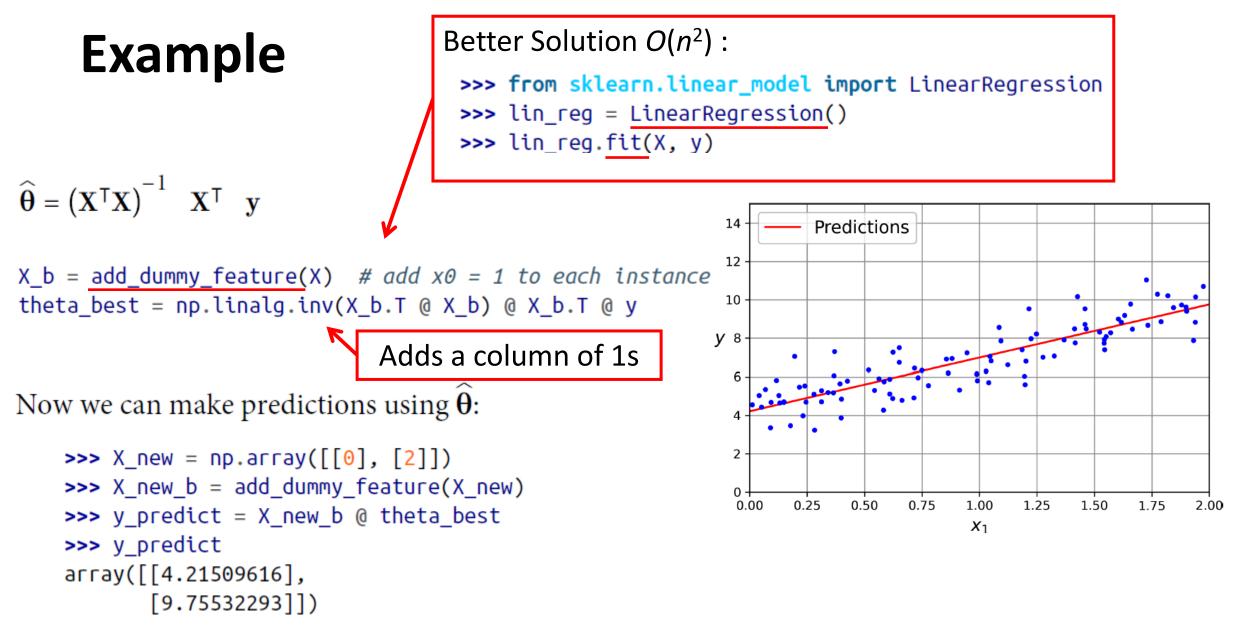
• The Root Mean Square Error (RMSE) is used as cost function.

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

• Minimizing this cost gives the following solution (normal function):

$$\widehat{\mathbf{\theta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \leftarrow Complexity O(mn^2)$$

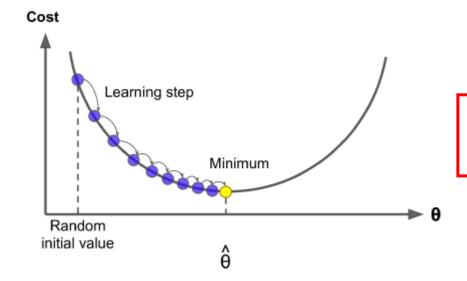
- $\widehat{\boldsymbol{\theta}}$ is the value of $\boldsymbol{\theta}$ that minimizes the cost function.
- **y** is the vector of target values containing $y^{(1)}$ to $y^{(m)}$.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

Gradient Descent

- Generic optimization algorithm capable of finding optimal solutions to a wide range of problems.
- Tweaks parameters iteratively in order to minimize a cost function.

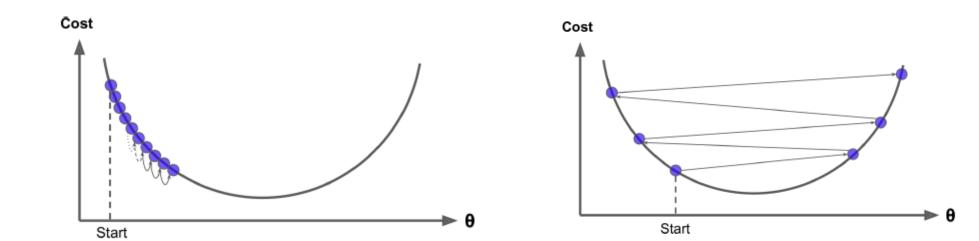


$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \text{MSE}(\boldsymbol{\theta})$$

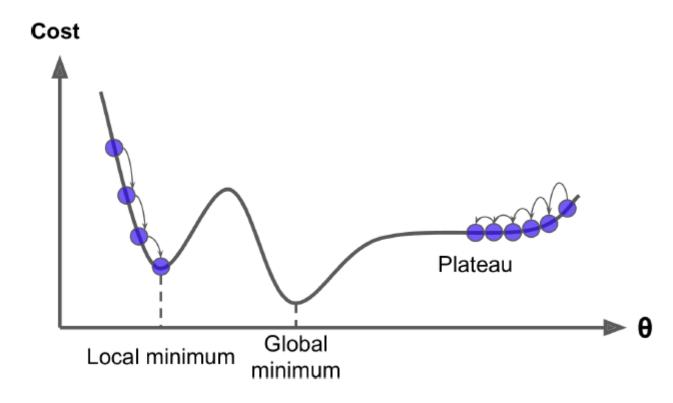
Learning Rate η

Too Small

Too Large

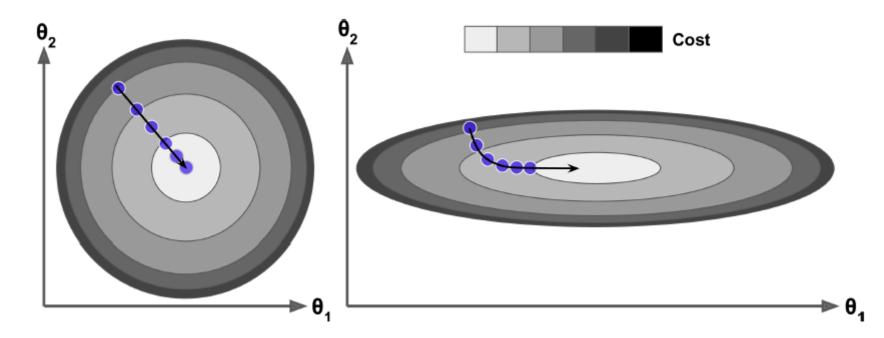


Gradient Descent Pitfalls



Feature Scaling

- Ensure that all features have a similar scale (*e.g.*, using Scikit-Learn's StandardScaler class).
- Gradient Descent with and without feature scaling.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

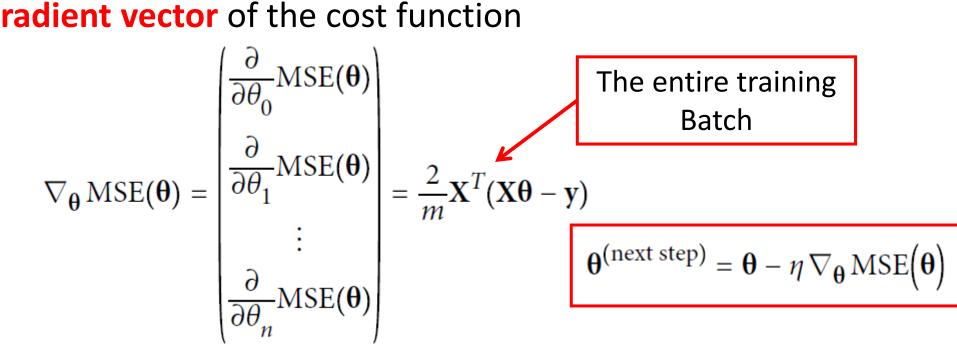
Batch Gradient Descent

• Partial derivatives of the cost function in θ_i

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\boldsymbol{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

Gradient vector of the cost function



Batch Gradient Descent

Gradient Descent step

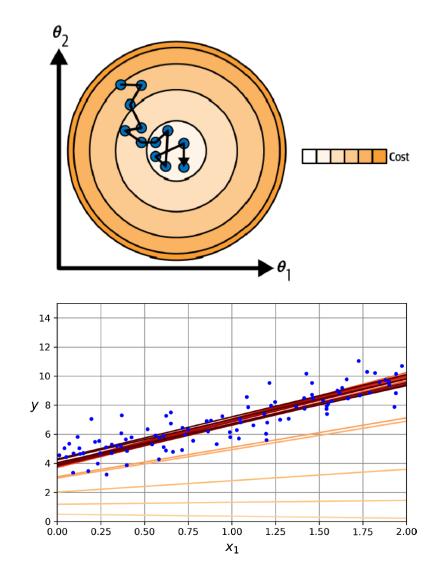
$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \text{MSE}(\boldsymbol{\theta})$$

• Gradient Descent with various learning rates



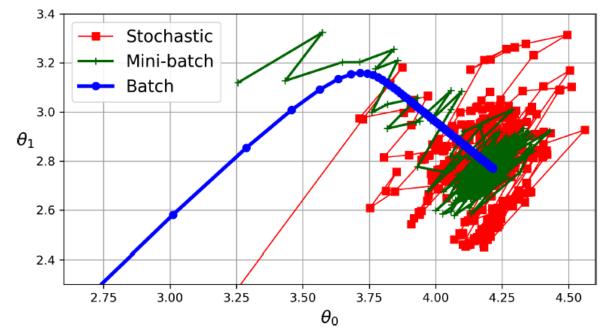
Stochastic Gradient Descent

- SGD picks a random instance in the training set at every step and computes the gradients.
- SGD is **faster** when the training set is large.
- Is **bouncy**
- Eventually gives good solution
- Can escape local minima



Mini-batch Gradient Descent

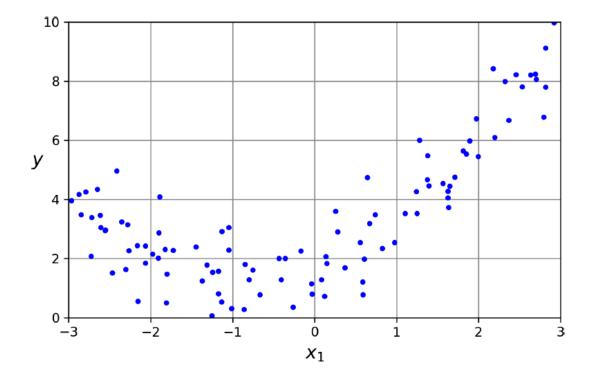
- Computes the gradients on small random sets of instances called mini batches.
- Benefits from hardware accelerators (e.g., GPU).
- Less bouncy, better solution, escapes some local minima



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

Polynomial Regression

- The shown data cannot be accurately modeled using linear regression.
- We can use a linear model to fit nonlinear data.
- Can try polynomial regression of degree 2 by adding the feature squared.



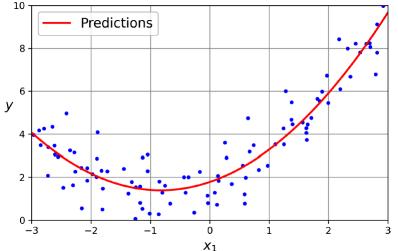
Polynomial Regression

```
>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)
>>> X[0]
array([-0.75275929])
>>> X_poly[0]
array([-0.75275929, 0.56664654])
```

• Then fit a linear regression model.

>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

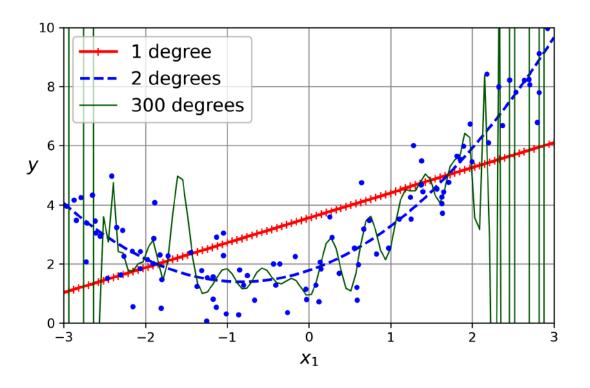
 $\widehat{y} = 0.56x_1^2 + 0.93x_1 + 1.78$



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

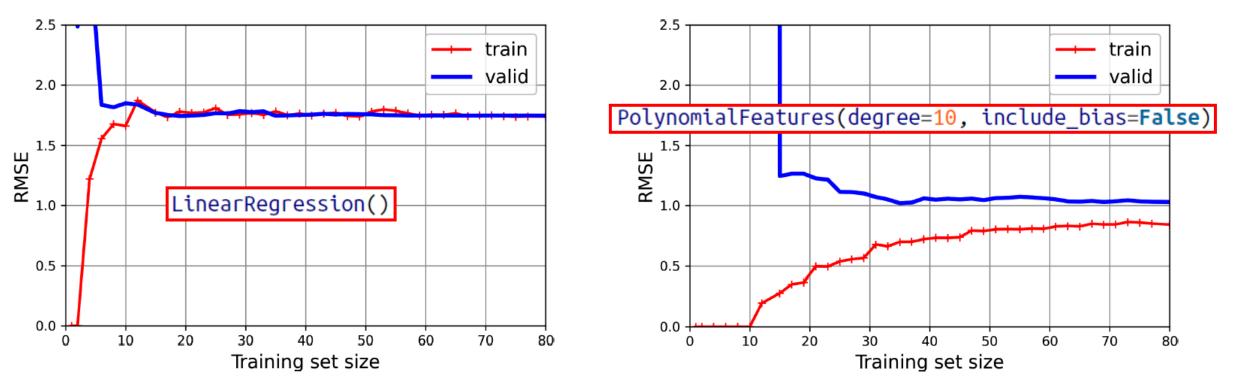
Learning Curves

- If you perform high-degree polynomial regression, you will likely fit the training data much better than with plain linear regression.
- This high-degree polynomial regression model is severely overfitting the training data.
- The **linear model** is **underfitting** it.



Learning Curves

- The accuracy on the validation set generally increases as the training set size increases.
- Overfitting decreases with larger training set.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

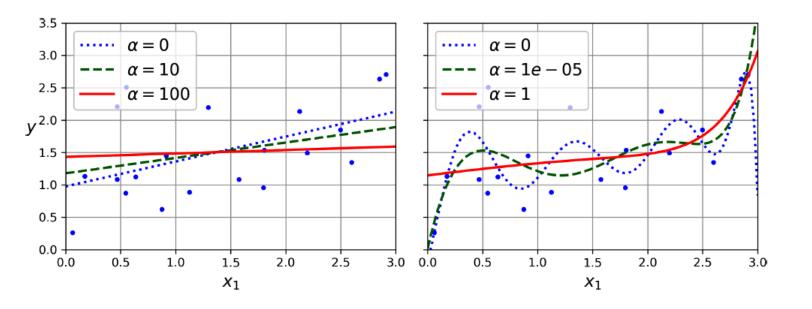
Regularized Linear Models

- Ways to reduce overfitting
- 1. Reduce the number of polynomial degrees.
- 2. Constrain the weights of the model.
 - Ridge regression (L2)
 - Lasso Regression (L1)
- 3. Use early stopping.

Ridge Regression

- Start with scaled features.
- Constrain the weights of the model using the $\|\mathbf{w}\|_2 = l_2$ norm of the weight vector.

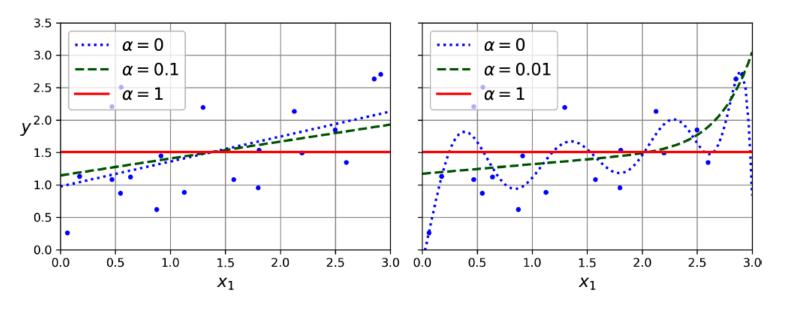
$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \frac{\alpha}{m} \sum_{i=1}^{n} \theta_i^2$$
 Excludes Θ_0



Lasso Regression

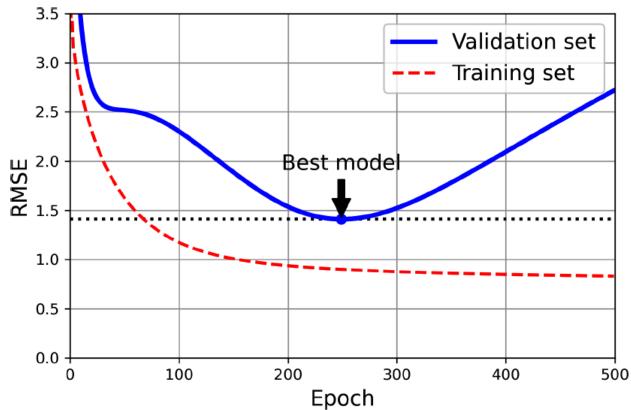
- LASSO: Least absolute shrinkage and selection operator regression
- Constrains the weights of the model using the ||w||₁ = l₁ norm of the weight vector.

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + 2\alpha \sum_{i=1}^{n} |\theta_i| \quad \leftarrow \quad \text{Excludes } \Theta_0$$



Early Stopping

- Stop training when the validation error reaches a minimum.
- Need to save the best model.



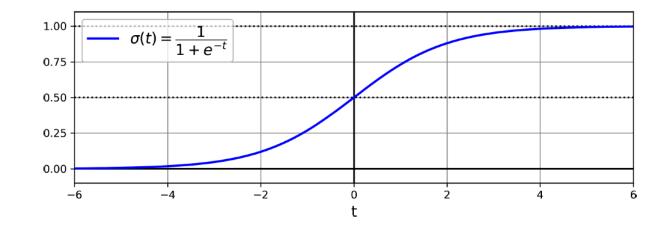
- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

Logistic Regression

- Some regression algorithms can be used for classification.
- The logistic regression model estimates the probability that an instance belongs to a particular class from the weighted sum of the input features.

$$\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x})$$

Logistic or sigmoid function



Decision Boundaries

- The decision boundary is typically at **50%**.
- It can be **changed** for better **recall** or **precision**.

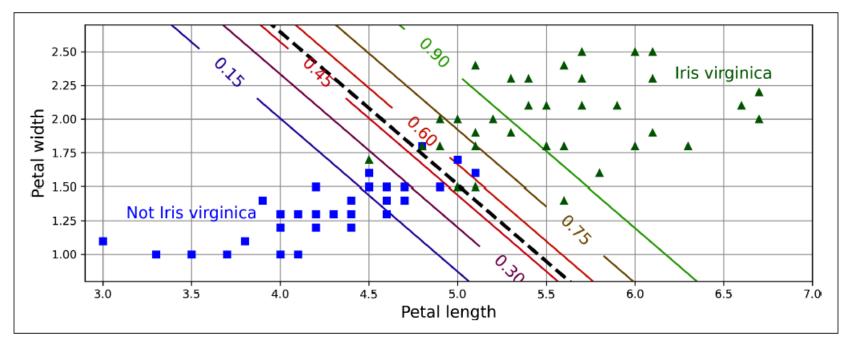


Figure 4-24. Linear decision boundary

Summary

- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Polynomial Regression
- 5. Learning Curves
- 6. Regularized Linear Models
- 7. Logistic Regression
- 8. Exercises

Exercises

- 1. What Linear Regression training algorithm can you use if you have a training set with millions of features?
- 2. Suppose the features in your training set have very different scales. What algorithms might suffer from this, and how? What can you do about it?
- 3. Do all Gradient Descent algorithms lead to the same model provided you let them run long enough?