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Learn, Keras and TensorFlow, O’Reilly, 3rd Edition, 2022

* Material: https://github.com/ageron/handson-mi3



https://github.com/ageron/handson-ml3

Introduction

* YouTube Video: Machine Learning - Supervised Learning
Classification from Cognitive Class

https://youtu.be/Lf2bCQlktTo



https://youtu.be/Lf2bCQIktTo
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1. MNIST Dataset

 MNIST is a set of 70,000 small
images of handwritten digits.

e Available from OpenML.org

* Scikit-Learn provides
download functions.
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http://openml.org/

1.1. Get the Data

* The sklearn.datasets package has many fetch *, load *, and
make_* functions.

from sklearn.datasets import fetch_openml

mnist = fetch openml('mnist 784', as_frame=False)

\ Bunch object with DESC,

data, and target keys




1.2. Extract Features and Labels

>>> X, y = mnist.data, mnist.target

>>> X
array([[0.
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>>> X.shape
(70000, 784)
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* There are 70,000 images, and
each image has 784 features.
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A 28x28 pixels, and each feature
0.], simply represents one pixel’s
0.1, intensity, from 0 (white) to 255
0.11)
(black).

'5', '6'], dtype=object)



1.3. Examine One Image

import as

def plot digit(image_data):
image = image_data.reshape(28, 28)
plt.imshow(image, cmap="binary")
plt.axis("off")

some_digit = X[0]
plot_digit(some _digit)
plt.show()

>>> y[0]
rSr



1.4. Split the Data

* The MNIST dataset is already split into a training set (the first 60,000
images) and a test set (the last 10,000 images).
* The training set is already shuffled.

X_train, X_test, y train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
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2. Training a Binary Classifier

* A binary classifier can classify two classes.

* For example, classifier for the number 5, capable of distinguishing

between two classes, 5 and not-5.

y_trains = (y_tratn == '57) __ True for all 5s, False for all
y test 5 = (y_test == '5") .

other digits.
from import SGDClassifier

sgd_clf = SGDClassifi_er(random_state=42)\. Stochastic Gradient

sgd_clf.fit(X_train, y_train_5)

>>> sgd_clf.predict([some_digit])
array([ True])

Descent (SGD) classifier

11
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3. Performance Measures

* Accuracy: Ratio of correct predictions
e Confusion matrix

* Precision and recall

* F1 Score

* Precision/recall tradeoff

13



3.1. Accuracy

y pred = clone_clf.predict(X test fold)
n_correct = sum(y_pred == y test fold)
print(n_correct / len(y_pred))

\ Example how to find the

accuracy.

>>> from sklearn.model_selection import cross_val_score
>>> cross_val _score(sgd clf, X _train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604 ])

\ Using the cross_val score()
function to find the accuracy on

three folds
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3.1. Accuracy

* Use cross _val predict() to predict the targets of the entire training
set.

from import cross_val predict

y _train_pred = cross_val predict(sgd clf, X train, y train_5, cv=3)

15



3.2. Confusion Matrix srecision — — L7
TP+ FP
Predicted
@ Negative Positive
&F 4
Negative 3 6 R
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recall =
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(e.qg., 3 out of 5)
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3.2. Confusion Matrix

* Scikit Learn has a function for finding the confusion matrix.

>>> from

import confusion_matrix

>>> CM = confusion=matrix(y_train_S, y _train_pred)

>>> CM
array([[53892,
[ 1891,

6871,
3530]1])

* The first row is for the non-5s (the negative class):
e 53,892 correctly classified (true negatives)
* 687 wrongly classified (false positives)

* The second row is for the 5s (the positive class):
* 1,891 wrongly classified (false negatives)
e 3,530 correctly classified (true positives)

17



3.3. Precision and Recall

Precision Recall

recision = P recall = rr
PIeCISION = =5 Fp ~ TP+ FN

>>> from sklearn.metrics import precision_score, recall_score

>>> precision_score(y_train_5, y train_pred) # == 3530 / (687 + 3530)
0.8370879772350012

>>> recall_score(y_train_5, y train_pred) # == 3530 / (1891 + 3530)
0.6511713705958311

The precision and recall are smaller than the accuracy.
Why?




3.4. F1 Score

* The F1 Score combines the precision and recall in one metric
(harmonic mean).

Fo_ 2 _ 5, precision x recall TP
be_r 1 precision +recall o FN+FP
precision = recall 2
>>> from import f1 score

>>> f1 _score(y_train_5, y_train_pred)
0.7325171197343846




3.5. Precision/Recall Tradeoff

* Increase the decision threshold to improve the precision when it is
bad to have FP.

* Decrease the decision threshold to improve the recall when it is
important not to miss FN.

Precision: 6/8 = 75% 4/5 = 80% 3/3 =100%
Recall: 6/6 = 100% 4/6 = 67% 3/6 = 50%
+17 5 3 S5 ¢ |5 9595
J’ S |5
P Score
Negative predictions A .-+7 Positive predictions

< >

Various thresholds
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3.5. Precision/Recall Tradeoff

* The function cross _val predict() can return decision scores
instead of predictions.

y _scores = cross_val _predict(sgd clf, X _train, y_train_5, cv=3,
method="decision_ function")

* These scores can be used to compute precision and recall for all
possible thresholds using the precision recall curve() function.

from sklearn.metrics import precision_recall _curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

21



3.5. Precision/Recall Tradeoff
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3.5. Precision/Recall Tradeoff

* For larger precision, increase the threshold, and decrease it for

larger recall. The first threshold with precision > 90%

* Example: To get 90% precision.

>>> 1dx_for_90 precision = (precisions >= 0.90).argmax()

>>> threshold for_90 precision = thresholds[idx_for 90 precision]
>>> threshold for_90 precision

3370.0194991439557

y_train_pred 90 = (y_scores >= threshold for_90 precision) \ True when score

>>> precision_score(y_train_5, y_train_pred_90) > new threshold

0.9000345901072293
>>> recall_at 90 precision = recall _score(y_train_5, y train_pred 90)
>>> recall _at 90 precision

0.4799852425751706 23
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4. Multiclass Classification

* Multiclass classifiers can distinguish between more than two classes.

* Some algorithms (such as Random Forest classifiers or Naive Bayes
classifiers) are capable of handling multiple classes directly.

e Others (such as Support Vector Machine classifiers or Linear
classifiers) are strictly binary classifiers.

* There are two main strategies to perform multiclass classification
using multiple binary classifiers.

25



4.1. One-versus-All (OvA) Strategy

* For example, classify the digit images into 10 classes (from 0 to 9) to
train 10 binary classifiers, one for each digit (a O-detector, a 1-
detector, a 2-detector, and so on).

* Then to classify an image, get the decision score from each classifier
for that image and select the class whose classifier outputs the
highest score.



4.2. One-versus-One (OvO) Strategy

* Train a binary classifier for every pair of digits.

* If there are N classes, need N x (N — 1) / 2 classifiers. For MNIST, need
45 classifiers.

* To classify an image, run the image through all 45 classifiers and see
which class wins the most duels.

* The main advantage of OvO is that each classifier only needs to be
trained on a subset of the training set.

* OvO is preferred for algorithms (such as Support Vector Machine)
that scale poorly with the size of the training set.

27



4.3. Scikit Learn Support of Multiclass

Classification

* Scikit-Learn detects when you try to use a binary classification
algorithm for a multiclass classification task, and it automatically runs
OVA (except for SVM classifiers for which it uses OvO).

>>> sgd _clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X _train, y_train)

>>> sgd _clf.predict([some_digit])
array(['3'], dtype="<U1")

from import RandomForestClassifier

A
forest_clf = RandomForestClassifier(random_state=42) R

>>> forest_clf.fit(X_train, y_train)

Better classifier
than SGD

>>> forest_clf.predict([some_digit])
array(igl, dtype=uint8)

28



4.3. Scikit Learn Support of Multiclass
Classification

* Note that the multiclass task is harder than the binary task.
* Binary task

>>> from import cross_val score
>>> cross_val _score(sgd clf, X _train, y _train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604 ])

 Multiclass task

>>> cross_val _score(sgd clf, X train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689 ])

\ Can improve the accuracy to over 89%
by using StandardScaler

29



4.4. Error Analysis

from sklearn.metrics import ConfusionMatrixDisplay

y _train_pred = cross_val predict(sgd clf, X_train_scaled, y_train, cv=3)

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
normalize="true", values format=".0%")

plt.show()
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4.4. Error Analysis

Many images are misclassified as 8s.

Confusion matrix =
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Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)




Outline

5. Multilabel classification
6. Multioutput classification
7. Exercise



5. Multilabel Classification

* Classifiers that output multiple classes for each instance.

y _train_large = (y_train >= 7)
y train_odd = (y _train % 2 == 1)
y multilabel = np.c_[y _train_large, vy train_odd]

knn_clf = KNeighborsClassifier() €— Popular algorithm
knn_clf.fit(X _train, y _multilabel)

>>> knn_clf.predict([some_digit])
array([[False, True]], dtype=bool)

33
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6. Multioutput Classification

* Also called multioutput—multiclass classification.

* It is a generalization of multilabel classification where each label can
be multiclass (i.e., it can have more than two possible values).

Figure 3-12. A noisy image (left) and the target clean image (right)
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Exercise

* Try to build a classifier for the MINIST dataset that achieves over 97%
accuracy on the test set. Hint: the KNeighborsClassifier works quite
well for this task; you just need to find good hyperparameter values
(try a grid search on the weights and n_neighbors hyperparameters).
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