AL Co-funded by the
S Erasmus+ Programme DeCAI R

of the European Union

Classification

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR)
618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

O'REILLY" %?,b

Hands-O
Reference achine L

Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Technigues
to Build Intelligent Systems
e Ty

e Chapter 3: Classification

Aurélien Géron

* Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 3rd Edition, 2022

* Material: https://github.com/ageron/handson-mi3

https://github.com/ageron/handson-ml3

Introduction

* YouTube Video: Machine Learning - Supervised Learning
Classification from Cognitive Class

https://youtu.be/Lf2bCQlktTo

https://youtu.be/Lf2bCQIktTo

Outline

Mu
Mu
Mu

N o U s W DhPRE

MNIST dataset
Training a binary classifier
Performance measures

ticlass classification
tilabel classification
tioutput classification

Exercise

1. MNIST Dataset

 MNIST is a set of 70,000 small
images of handwritten digits.

e Available from OpenML.org

* Scikit-Learn provides
download functions.

NN T4 WwLUNO
oo\ N4 >N L~ 0
RN N LW R VE e
NSO NGFERWP~Q
v HANWNWEARON—Q
LN cNLYVN—-0
DY LPUNO
VYN st —0O
DTN PNO
NN G~cHh AW —o

http://openml.org/

1.1. Get the Data

* The sklearn.datasets package has many fetch *, load *, and
make_* functions.

from sklearn.datasets import fetch_openml

mnist = fetch openml('mnist 784', as_frame=False)

\ Bunch object with DESC,

data, and target keys

1.2. Extract Features and Labels

>>> X, y = mnist.data, mnist.target

>>> X
array([[0.
[0.
[0.
[0.
[0.
[0.,
>>> X.shape
(70000, 784)
>>> YV
array(['5"',
>>> y.shape
(70000,)

.
] L]] L]] L]

0.
0.
0.

(O]

I@I’

0.
0.
0.

(©]

0.
0.
0.

(O]

, 0.
, 0.
, 0.

* There are 70,000 images, and
each image has 784 features.

0.],
g-]’ * This is because each image is
A 28x28 pixels, and each feature
0.], simply represents one pixel’s
0.1, intensity, from 0 (white) to 255
0.11)
(black).

'5', '6'], dtype=object)

1.3. Examine One Image

import as

def plot digit(image_data):
image = image_data.reshape(28, 28)
plt.imshow(image, cmap="binary")
plt.axis("off")

some_digit = X[0]
plot_digit(some _digit)
plt.show()

>>> y[0]
rSr

1.4. Split the Data

* The MNIST dataset is already split into a training set (the first 60,000
images) and a test set (the last 10,000 images).
* The training set is already shuffled.

X_train, X_test, y train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

Outline

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

Multioutput classification

N o U s W N

Exercise

2. Training a Binary Classifier

* A binary classifier can classify two classes.

* For example, classifier for the number 5, capable of distinguishing

between two classes, 5 and not-5.

y_trains = (y_tratn == '57) __ True for all 5s, False for all
y test 5 = (y_test == '5") .

other digits.
from import SGDClassifier

sgd_clf = SGDClassifi_er(random_state=42)\. Stochastic Gradient

sgd_clf.fit(X_train, y_train_5)

>>> sgd_clf.predict([some_digit])
array([True])

Descent (SGD) classifier

11

Outline

N o U s W

Performance measures
Multiclass classification
Multilabel classification

Multioutput classification
Exercise

3. Performance Measures

* Accuracy: Ratio of correct predictions
e Confusion matrix

* Precision and recall

* F1 Score

* Precision/recall tradeoff

13

3.1. Accuracy

y pred = clone_clf.predict(X test fold)
n_correct = sum(y_pred == y test fold)
print(n_correct / len(y_pred))

\ Example how to find the

accuracy.

>>> from sklearn.model_selection import cross_val_score
>>> cross_val _score(sgd clf, X _train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])

\ Using the cross_val score()
function to find the accuracy on

three folds

14

3.1. Accuracy

* Use cross _val predict() to predict the targets of the entire training
set.

from import cross_val predict

y _train_pred = cross_val predict(sgd clf, X train, y train_5, cv=3)

15

3.2. Confusion Matrix srecision — — L7
TP+ FP
Predicted
@ Negative Positive
&F 4
Negative 3 6 R
Actual ;) Precision
.. - (e.g., 3outof 4)
Positive b g - 5 5. 5
TP h Recall iﬂ

recall =

I'P+ FN

(e.qg., 3 out of 5)

16

3.2. Confusion Matrix

* Scikit Learn has a function for finding the confusion matrix.

>>> from

import confusion_matrix

>>> CM = confusion=matrix(y_train_S, y _train_pred)

>>> CM
array([[53892,
[1891,

6871,
3530]1])

* The first row is for the non-5s (the negative class):
e 53,892 correctly classified (true negatives)
* 687 wrongly classified (false positives)

* The second row is for the 5s (the positive class):
* 1,891 wrongly classified (false negatives)
e 3,530 correctly classified (true positives)

17

3.3. Precision and Recall

Precision Recall

recision = P recall = rr
PIeCISION = =5 Fp ~ TP+ FN

>>> from sklearn.metrics import precision_score, recall_score

>>> precision_score(y_train_5, y train_pred) # == 3530 / (687 + 3530)
0.8370879772350012

>>> recall_score(y_train_5, y train_pred) # == 3530 / (1891 + 3530)
0.6511713705958311

The precision and recall are smaller than the accuracy.
Why?

3.4. F1 Score

* The F1 Score combines the precision and recall in one metric
(harmonic mean).

Fo_ 2 _ 5, precision x recall TP
be_r 1 precision +recall o FN+FP
precision = recall 2
>>> from import f1 score

>>> f1 _score(y_train_5, y_train_pred)
0.7325171197343846

3.5. Precision/Recall Tradeoff

* Increase the decision threshold to improve the precision when it is
bad to have FP.

* Decrease the decision threshold to improve the recall when it is
important not to miss FN.

Precision: 6/8 = 75% 4/5 = 80% 3/3 =100%
Recall: 6/6 = 100% 4/6 = 67% 3/6 = 50%
+17 5 3 S5 ¢ |5 9595
J’ S |5
P Score
Negative predictions A .-+7 Positive predictions

< >

Various thresholds

20

3.5. Precision/Recall Tradeoff

* The function cross _val predict() can return decision scores
instead of predictions.

y _scores = cross_val _predict(sgd clf, X _train, y_train_5, cv=3,
method="decision_ function")

* These scores can be used to compute precision and recall for all
possible thresholds using the precision recall curve() function.

from sklearn.metrics import precision_recall _curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

21

3.5. Precision/Recall Tradeoff

1.0

0.8

0.6

0.4

0.2

0.0

: I
\ E,”'-‘“ *u.. l
I
. (Y b Y
;/’? N \J\‘:J
)\ :
/ :
/ \ : -
; : —== Precision -
] \ —— Recall
,." A\ N R PPRPORY threshold _
/ \
/ .
4 :
7 :
N\&

—20000 0

Threshold

20000

40000

22

3.5. Precision/Recall Tradeoff

* For larger precision, increase the threshold, and decrease it for

larger recall. The first threshold with precision > 90%

* Example: To get 90% precision.

>>> 1dx_for_90 precision = (precisions >= 0.90).argmax()

>>> threshold for_90 precision = thresholds[idx_for 90 precision]
>>> threshold for_90 precision

3370.0194991439557

y_train_pred 90 = (y_scores >= threshold for_90 precision) \ True when score

>>> precision_score(y_train_5, y_train_pred_90) > new threshold

0.9000345901072293
>>> recall_at 90 precision = recall _score(y_train_5, y train_pred 90)
>>> recall _at 90 precision

0.4799852425751706 23

Outline

Multiclass classification
Multilabel classification

Multioutput classification

N o Uk

Exercise

4. Multiclass Classification

* Multiclass classifiers can distinguish between more than two classes.

* Some algorithms (such as Random Forest classifiers or Naive Bayes
classifiers) are capable of handling multiple classes directly.

e Others (such as Support Vector Machine classifiers or Linear
classifiers) are strictly binary classifiers.

* There are two main strategies to perform multiclass classification
using multiple binary classifiers.

25

4.1. One-versus-All (OvA) Strategy

* For example, classify the digit images into 10 classes (from 0 to 9) to
train 10 binary classifiers, one for each digit (a O-detector, a 1-
detector, a 2-detector, and so on).

* Then to classify an image, get the decision score from each classifier
for that image and select the class whose classifier outputs the
highest score.

4.2. One-versus-One (OvO) Strategy

* Train a binary classifier for every pair of digits.

* If there are N classes, need N x (N — 1) / 2 classifiers. For MNIST, need
45 classifiers.

* To classify an image, run the image through all 45 classifiers and see
which class wins the most duels.

* The main advantage of OvO is that each classifier only needs to be
trained on a subset of the training set.

* OvO is preferred for algorithms (such as Support Vector Machine)
that scale poorly with the size of the training set.

27

4.3. Scikit Learn Support of Multiclass

Classification

* Scikit-Learn detects when you try to use a binary classification
algorithm for a multiclass classification task, and it automatically runs
OVA (except for SVM classifiers for which it uses OvO).

>>> sgd _clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X _train, y_train)

>>> sgd _clf.predict([some_digit])
array(['3'], dtype="<U1")

from import RandomForestClassifier

A
forest_clf = RandomForestClassifier(random_state=42) R

>>> forest_clf.fit(X_train, y_train)

Better classifier
than SGD

>>> forest_clf.predict([some_digit])
array(igl, dtype=uint8)

28

4.3. Scikit Learn Support of Multiclass
Classification

* Note that the multiclass task is harder than the binary task.
* Binary task

>>> from import cross_val score
>>> cross_val _score(sgd clf, X _train, y _train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])

 Multiclass task

>>> cross_val _score(sgd clf, X train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689])

\ Can improve the accuracy to over 89%
by using StandardScaler

29

4.4. Error Analysis

from sklearn.metrics import ConfusionMatrixDisplay

y _train_pred = cross_val predict(sgd clf, X_train_scaled, y_train, cv=3)

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
normalize="true", values format=".0%")

plt.show()

30

4.4. Error Analysis

Many images are misclassified as 8s.

Confusion matrix =
- 6000
0 22 5 8 43 36 6
0 N 37 24 4 44 4 7
6400 5000
27 27 92 73 27 67 36
5 22 17 117 2 203 27 40 4000
% 12 14 9 12 34 27
Q 27 15 168 53 n 75 14 535 60 3000
o
= 30 15 3 44 97 3 131 1
21 30 49 12 3 &l 195 210 2000
17 63 48 86 3 126 25 10 44
1000
64 118 36 1 179 371
0 1 2 3 4 5 6 7 8 g 0
Predicted label

True label
[(e] (00] -] (#)] un =) 9]

. Y
CM normalized by row
LY 0% 0% 0% 0% 1% 1% 0% 4%

0% 1% 0% 0% 1%
% 2% 1% 0%

% 2% sk 0% 3%

0% %
3% 1% PR 1% 0% 10% 1%
1% 2% I 0% 2% 0%
1% 0% 0% SRR 3% 3%
0% 2% 0% 0% LELR 1%

2% 1% 0% 3% 6%

- 0.8

3%

=

0%

1% % 0%

3%
1%
1% 0%
1% 0%
1% 1%

1% 1%

0 1 2 3 4 5 6 7 8 9
Predicted label

Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)

Outline

5. Multilabel classification
6. Multioutput classification
7. Exercise

5. Multilabel Classification

* Classifiers that output multiple classes for each instance.

y _train_large = (y_train >= 7)
y train_odd = (y _train % 2 == 1)
y multilabel = np.c_[y _train_large, vy train_odd]

knn_clf = KNeighborsClassifier() €— Popular algorithm
knn_clf.fit(X _train, y _multilabel)

>>> knn_clf.predict([some_digit])
array([[False, True]], dtype=bool)

33

Outline

6. Multioutput classification
/. Exercise

6. Multioutput Classification

* Also called multioutput—multiclass classification.

* It is a generalization of multilabel classification where each label can
be multiclass (i.e., it can have more than two possible values).

Figure 3-12. A noisy image (left) and the target clean image (right)

35

Summary

Mu
Mu
Mu

N o U s W DhPRE

MNIST dataset
Training a binary classifier
Performance measures

ticlass classification
tilabel classification
tioutput classification

Exercise

Exercise

* Try to build a classifier for the MINIST dataset that achieves over 97%
accuracy on the test set. Hint: the KNeighborsClassifier works quite
well for this task; you just need to find good hyperparameter values
(try a grid search on the weights and n_neighbors hyperparameters).

37

