

1

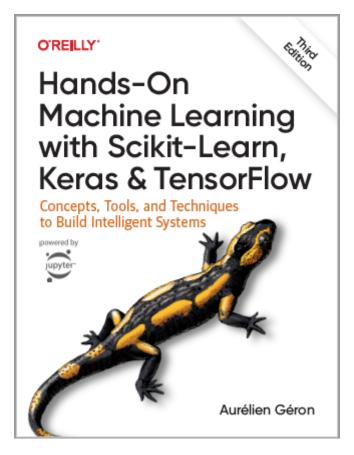
Classification

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

• Chapter 3: Classification



- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 3rd Edition, 2022
 - Material: https://github.com/ageron/handson-ml3

Introduction

• YouTube Video: Machine Learning - Supervised Learning Classification from Cognitive Class

https://youtu.be/Lf2bCQIktTo

Outline

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

1. MNIST Dataset

- MNIST is a set of 70,000 small images of handwritten digits.
- Available from <u>OpenML.org</u>
- Scikit-Learn provides download functions.

00000000000 / | | | | / | / | / | 222222222 3333333333333 YA444444444 6666666666 7717777777 88888888888 1999999**9**999

1.1. Get the Data

 The sklearn.datasets package has many fetch_*, load_*, and make_* functions.

from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', as_frame=False)
Bunch object with DESC,
data, and target keys

1.2. Extract Features and Labels

```
>>> X, y = mnist.data, mnist.target
>>> X
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., 0., ..., 0., 0., 0.]
       [0., 0., 0., 0., ..., 0., 0., 0.],
       . . . ,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]
>>> X.shape
(70000, 784)
>>> V
array(['5', '0', '4', ..., '4', '5', '6'], dtype=object)
>>> y.shape
(70000,)
```

- There are 70,000 images, and each image has **784** features.
- This is because each image is 28×28 pixels, and each feature simply represents one pixel's intensity, from 0 (white) to 255 (black).

1.3. Examine One Image

```
import matplotlib.pyplot as plt
def plot_digit(image_data):
    image = image_data.reshape(28, 28)
    plt.imshow(image, cmap="binary")
    plt.axis("off")
some_digit = X[0]
plot_digit(some_digit)
plt.show()
            >>> y[0]
            '5'
```

1.4. Split the Data

- The MNIST dataset is already split into a **training set** (the first 60,000 images) and a **test set** (the last 10,000 images).
- The training set is **already shuffled**.

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

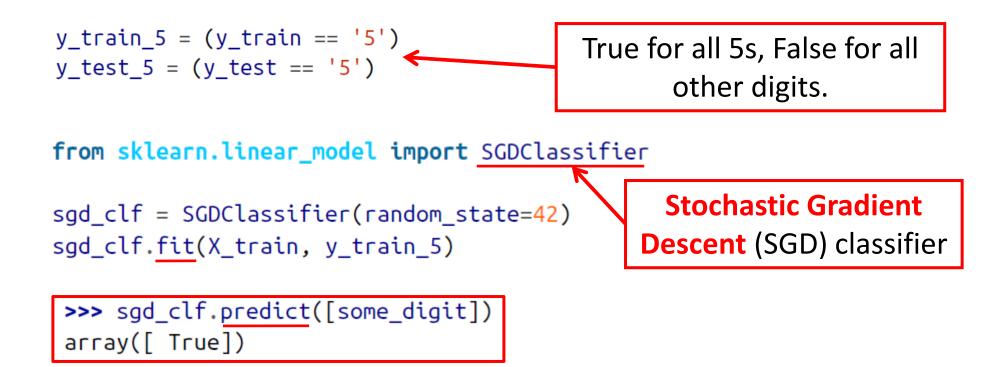
Outline

1. MNIST dataset

- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

2. Training a Binary Classifier

- A binary classifier can classify two classes.
- For example, classifier for the number 5, capable of distinguishing between two classes, **5** and **not-5**.



Outline

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

3. Performance Measures

- Accuracy: Ratio of correct predictions
- Confusion matrix
- Precision and recall
- F1 Score
- Precision/recall tradeoff

3.1. Accuracy

```
y_pred = clone_clf.predict(X_test_fold)
n_correct = sum(y_pred == y_test_fold)
print(n_correct / len(y_pred))
```

Example how to find the accuracy.

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])

Using the cross_val_score() function to find the accuracy on three folds

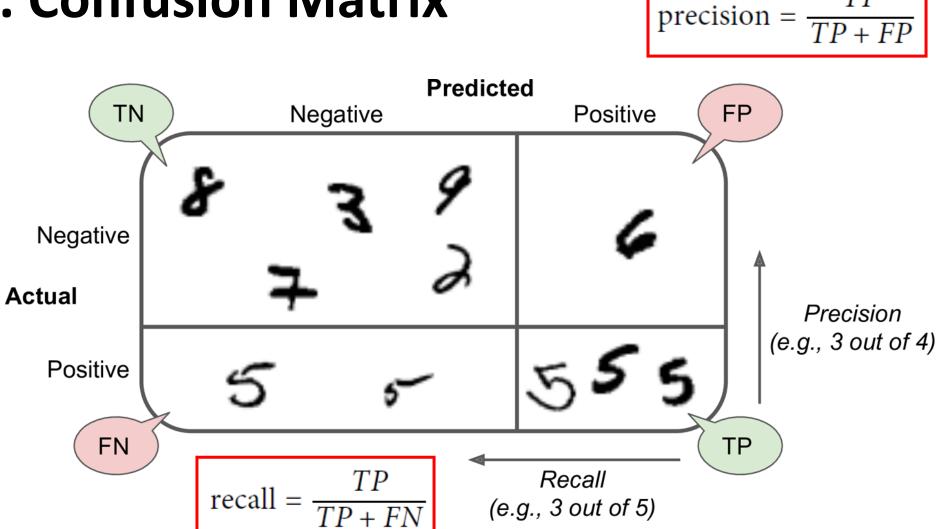
3.1. Accuracy

• Use **cross_val_predict()** to predict the targets of the entire training set.

from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

3.2. Confusion Matrix



TP

3.2. Confusion Matrix

• Scikit Learn has a function for finding the confusion matrix.

```
>>> from sklearn.metrics import confusion_matrix
>>> cm = confusion_matrix(y_train_5, y_train_pred)
>>> cm
array([[53892, 687],
       [ 1891, 3530]])
```

- The first row is for the non-5s (the **negative** class):
 - 53,892 correctly classified (true negatives)
 - 687 wrongly classified (false positives)
- The second row is for the 5s (the **positive** class):
 - 1,891 wrongly classified (false negatives)
 - 3,530 correctly classified (true positives)

3.3. Precision and Recall

Precision

Recall

precision =
$$\frac{TP}{TP + FP}$$
 recall = $\frac{TP}{TP + FN}$

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 3530 / (687 + 3530)
0.8370879772350012
>>> recall_score(y_train_5, y_train_pred) # == 3530 / (1891 + 3530)
0.6511713705958311

The precision and recall are smaller than the accuracy. Why?

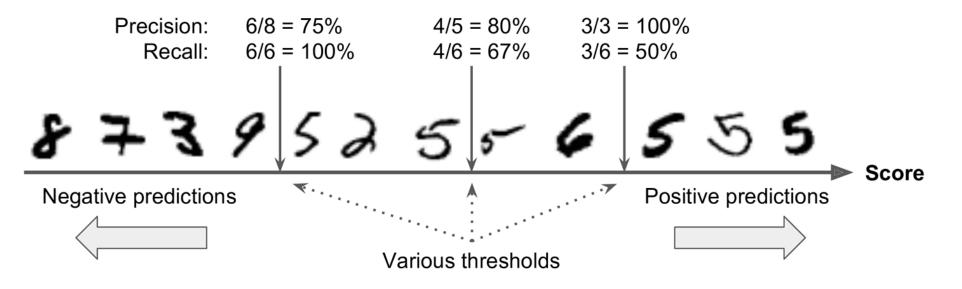
3.4. F1 Score

• The F1 Score combines the precision and recall in one metric (harmonic mean).

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7325171197343846

- Increase the decision threshold to improve the precision when it is bad to have FP.
- Decrease the decision threshold to improve the recall when it is important not to miss FN.

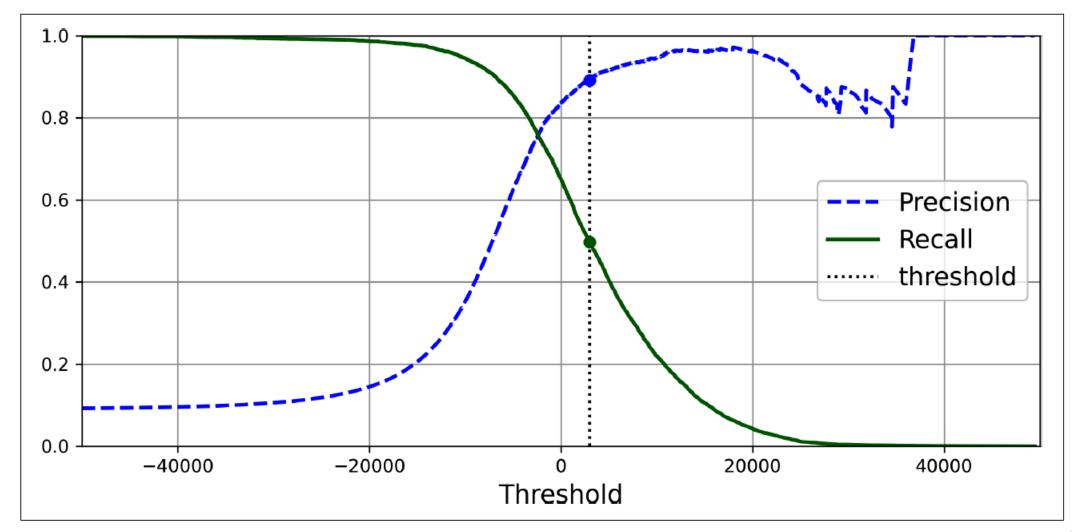


• The function cross_val_predict() can return decision scores instead of predictions.

 These scores can be used to compute precision and recall for all possible thresholds using the precision_recall_curve() function.

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)



- For larger precision, increase the threshold, and decrease it for larger recall.
 The first threshold with precision ≥ 90%
- Example: To get 90% precision.

```
>>> idx_for_90_precision = (precisions >= 0.90).argmax()
>>> threshold_for_90_precision = thresholds[idx_for_90_precision]
>>> threshold_for_90_precision
3370.0194991439557
```

Outline

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

4. Multiclass Classification

- Multiclass classifiers can distinguish between more than two classes.
- Some algorithms (such as Random Forest classifiers or Naive Bayes classifiers) are capable of handling multiple classes directly.
- Others (such as Support Vector Machine classifiers or Linear classifiers) are strictly binary classifiers.
- There are **two main strategies** to perform multiclass classification using multiple binary classifiers.

4.1. One-versus-All (OvA) Strategy

- For example, classify the digit images into 10 classes (from 0 to 9) to train 10 binary classifiers, one for each digit (a 0-detector, a 1detector, a 2-detector, and so on).
- Then to classify an image, get the decision score from each classifier for that image and select the class whose classifier outputs the **highest score**.

4.2. One-versus-One (OvO) Strategy

- Train a binary classifier **for every pair** of digits.
- If there are N classes, need N × (N 1) / 2 classifiers. For MNIST, need
 45 classifiers.
- To classify an image, run the image through all 45 classifiers and see which class wins the most duels.
- The main advantage of OvO is that each classifier only needs to be trained on a subset of the training set.
- OvO is preferred for algorithms (such as **Support Vector Machine**) that scale poorly with the size of the training set.

4.3. Scikit Learn Support of Multiclass Classification

 Scikit-Learn detects when you try to use a binary classification algorithm for a multiclass classification task, and it automatically runs
 OvA (except for SVM classifiers for which it uses OvO).

```
>>> sgd_clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train)
>>> sgd_clf.predict([some_digit])
array(['3'], dtype='<U1')</pre>
```

```
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(random_state=42)
>>> forest_clf.fit(X_train, y_train)
>>> forest_clf.predict([some_digit])
array([5], dtype=uint8)
```

Better classifier than SGD

4.3. Scikit Learn Support of Multiclass Classification

- Note that the multiclass task is harder than the binary task.
- Binary task

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])

Multiclass task

>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689])

Can improve the accuracy to over 89%

by using **StandardScaler**

4.4. Error Analysis

from sklearn.metrics import ConfusionMatrixDisplay

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

4.4. Error Analysis

Many images are misclassified as 8s.

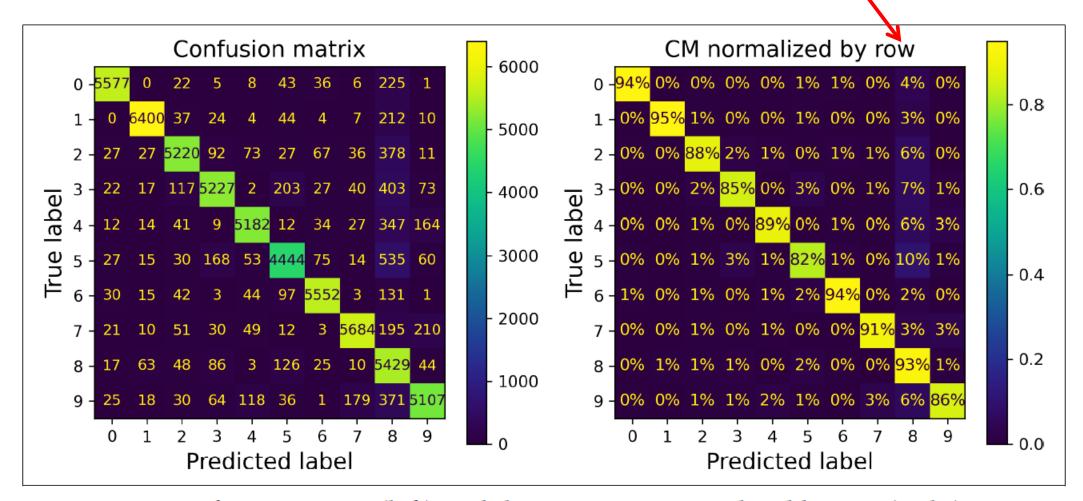


Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)

Outline

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

5. Multilabel Classification

• Classifiers that output multiple classes for each instance.

Outline

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

6. Multioutput Classification

- Also called multioutput-multiclass classification.
- It is a generalization of multilabel classification where each label can be multiclass (*i.e.*, it can have more than two possible values).

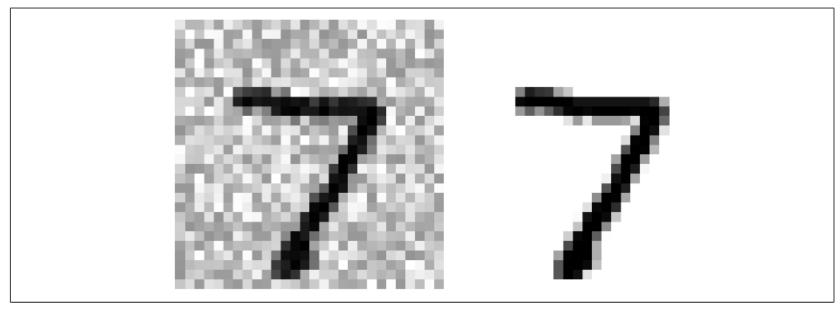


Figure 3-12. A noisy image (left) and the target clean image (right)

Summary

- 1. MNIST dataset
- 2. Training a binary classifier
- 3. Performance measures
- 4. Multiclass classification
- 5. Multilabel classification
- 6. Multioutput classification
- 7. Exercise

Exercise

• Try to build a classifier for the MNIST dataset that achieves over 97% accuracy on the test set. Hint: the KNeighborsClassifier works quite well for this task; you just need to find good hyperparameter values (try a grid search on the weights and n_neighbors hyperparameters).