AL Co-funded by the
S Erasmus+ Programme DeCAI R

of the European Union

Advanced Python

Prof. Gheith Abandah

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR)
618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP



Reference

* Wes McKinney, Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython, O’Reilly Media, 3rd
Edition, 2022.

 Material: https://github.com/wesm/pydata-book



https://github.com/wesm/pydata-book

Outline

3.1 Data Structures and Sequences
3.2 Functions
3.3 Files and the Operating System



Outline

3.1 Data Structures and * Tuple
Sequences o List

* Sequence Functions
* Dict



Tuple

* A tuple is a fixed-length,
immutable sequence of
Python objects.

* How to convert objects to
tuples?

* What are the functions of
operators + and * on tuples?

* Swapping: What is Python
way to swap two vars?

In [5]: tuple([4, 0, 2])
out[5]: (4, @, 2)

In [6]: tup = tuple('string’)
In [7]: tup
0ut:7:: (ISI, ltl, lr‘l, lil, lnl, lgl)

In [13]: (4, None, 'foo') + ('bar’,)
Out[13]: (4, None, 'foo', 'bar')

In [24]: b, a=a, b




List

e List are ordered and
mutable.

* How to convert objects to

lists?
e What is the difference

between .append() and

.insert()?

In
In
In
Out

[37]:
[38]:
[39]:
[39]:

tup = ('foo', 'bar')
b_list = list(tup)

b list

['foo', 'bar']

In [44]: list(range(9, 7))
out[44]: [e, 1, 2, 3, 4, 5, 6]

In
In
In
Out

[45] :
(47] :
(48] :
48]

b list.append('baz")
b list.insert(1, 'red')
b list

['foo', 'red', 'bar', 'baz']



List — Add and remove

 What is the difference
between .pop() and
.remove()?

* What is the difference
between .append() and
.extend()?

In [48]:

Oout[48]

In [49]:
Out[49]:

In [53]:
In [54]:
Out[54]:

In [59]:
In [60]:
Out[e9]:

b list

: ['foo', 'red', 'bar',

b list.pop(9)
"foo’

b list.remove('red")
b list
['bar', 'baz']

b list.extend([7, 8])
b list
['bar', 'baz', 7, 8]

'baz']



List — Sort

In
* You can sort lists using In

.sort() and sorted(). out[

What is the difference? In
Out

In
In
Out

(61]:
[62]:
62]:
[63]:
[63]:

(64]:
[65]:
[65]:

a=1[7, 2, 5, 1, 3]
sorted(a)

[1, 2, 3, 5, 7]

a

[7, 2, 5, 1, 3]

a.sort()
a
[1, 2, 3, 5, 7]

Syntax:

List.sort(reverse=True|False, key=myFunc)




Built-in Sequence Functions

* What does each of the
following functions do?

* enumerate()

* zip()
* reversed()
 What is the difference
between

sorted(reverse=True) and
reversed()?

11 = ['foo', 'bar', 'baz']

12 = ['one', '"two', 'three']

for i, (a, b) in enumerate(zip(l1l, 12)):
print('{0}: {1}, {2}'.format(i, a, b))

0: foo, one

1: bar, two
2: baz, three

list(reversed(range(10)))
[9.’ 8.’ 7.’ 6.’ 5.’ 4.’ 3.’ 2.’ 1) e]




Dictionary

* Hash map or associative
array between key-value
pairs.

* What is the difference
between .pop() and del?

{'a'" :' 1, 'b' : 2, 'c¢' : 'S’

del di['a"]
ret = dl.pop('c')
ret

g

di

{'b" : 2}

10



Dictionary Methods

* Creating a dictionary

* .update()
c .get()

e .keys()

e .values()
e .items()

mapping = {}
for key, value in zip(k 1, v 1):
mapping[key] = value

dl.update({'b" : 11, 'c' : 12})

value = d.get(key, default value)

for key, value in d.items():

mapping[key] = value

11



Outline

3.2 Functions

 Namespaces, Scope, and
ocal Functions

* Returning Multiple Values
* Functions Are Objects

* Anonymous (Lambda)
Functions

* Currying: Partial Argument
Application

e Generators

12



Namespaces, Scope, and Local Functions

 Functions can access def func():
variables in two different a = []

. a.append(1)
scopes: global and local. B BB B

* Variables that are assigned a = []
within a function by default def func():
are assigned to the local a.append(1)

Hit #itt it
namespace. def func():
* What happens to a after the global a
calling func()? a = [

a.append(1)

13



Returning Multiple Values

* How to return multiple def f():
values from a function? ‘; = 2
c =7

return a, b, ¢

a, b, c = f()

* What do you think about 4 T
, . ef £():
this alternative? 3 = 5
b =6

return {'a" : a, 'b"' : b}

14



Functions Are Objects

* Since Python functions are
objects, you can:
* Put them in lists
* lterate on them

e Use them as arguments to
other functions

string =
func_list = [f1, f2, f3]
for func in func_list:

string = func(string)

for x in map(fl1l, iter):
print(x)

15



Anonymous (Lambda) Functions

* Writing functions consisting  def short_function(x):

of a single statement return x * 2
 How to sort a collection of
strings by the number of equiv_anon = lambda x: x * 2
distinct letters in each
string? strings.sort(key=lambda x:
len(set(list(x))))

strings = ['card’', 'aaaa', 'abab']

['aaaa', 'abab', 'card']




Currying: Partial Argument Application

def add _numbers(x, y):

e Currying is deriving new return x +y

functions from existing ones.
from import partial

add five = partial(add_numbers, 5)
add_five(4)
9

* In Python, use partial()

17



Generators

some_dict = {'a': 1, 'b': 2, 'c': 3}

* Use iter() to create an

iterable object. dict_iterator = iter(some_dict)

next(dict_iterator)

d

list(dict_iterator)
[lbl.’ Icl]

18



itertools module

Table 3-2. Some useful itertools functions

combinations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
ignoring order and without replacement (see also the companion function
combinations_with_replacement)

permutations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
respecting order

groupby(iterable[, keyfunc]) Generates (key, sub-iterator) foreach unique key

product(*iterables, repeat=1) Generates the Cartesian product of the input iterables as tuples, similar to a
nested for loop

list(itertools.combinations(['a','b','c'], 2))
[(a’, 'b"), ("a’, 'c'), ('b", "c")]

19



itertools module

Table 3-2. Some useful itertools functions

combinations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
ignoring order and without replacement (see also the companion function
combinations_with_replacement)

permutations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
respecting order

groupby(iterable[, keyfunc]) Generates (key, sub-iterator) foreach unique key

product(*iterables, repeat=1) Generates the Cartesian product of the input iterables as tuples, similar to a
nested for loop

list(itertools.permutations([‘'a’','b','c'], 2))
[(IaIJ 'b')) (Ial.’ 'C'), (Ibl.’ 'a')J (lle ICI)J ('ClJ 'a')J ('ClJ lbl)]

20




itertools module

* Group the following list by the first letter.

names = [ 'Alan’,

import itertools

first letter = lambda x: x[9]

names.sort(key=first letter)

for letter, n in itertools.groupby(names, first_letter):
print(letter, list(n)) # n 1s a generator

A
S
W

"Alan’,

 'Wes',

"Adam’,

[ 'Steven']

'‘Will']

"Adam’,

'Wes', 'Will', 'Albert’,

‘Albert’]

'Steven’]

21



itertools module

Table 3-2. Some useful itertools functions

combinations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
ignoring order and without replacement (see also the companion function
combinations_with_replacement)

permutations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
respecting order

groupby(iterable[, keyfunc]) Generates (key, sub-iterator) foreach unique key

product(*iterables, repeat=1) Generates the Cartesian product of the input iterables as tuples, similar to a
nested for loop

list(itertools.product([1, 2], ['a', 'b']))
[(1, "a"), (1, 'b"), (2, "a"), (2, 'b")]

22



Outline

3.3 Files and the Operating System

23



Python File Support

Line 1
Line 2

° The built_in open function path = 'folder\\filel.txt' # or /

. . f = open(path) # read is default mode
supports opening a file for 4. seen(path) !

reading or writing. # remove right white space
] . line = line.rstrip()
* You can iterate on the file print(line)
handle. f.close()
Line 1
Line 2

with open(path) as f:
for line in f:
print(line.rstrip())

* Alternative syntax

24



Python File Modes

Mode Description

r

W
X

w

Read-only mode

Write-only mode; creates a new file (erasing the data for any file with the same name)

Write-only mode; creates a new file, but fails if the file path already exists
Append to existing file (create the file if it does not already exist)

Read and write

Add to mode for binary files (i.e., "'rb' or 'wb"')

The default is text mode
and utf-8 encoding.

Text mode for files (automatically decoding bytes to Unicode). This is the default if not specified. Add t to other

modes to use this (i.e., 'rt' or 'xt')

25




Python File Support

Line 1

Line 2

* How to read a file into a list ~ with open(path) as f:
of strings? lines = [x.rstrip() for x in f]

>>> print(f.read(3))

Lin
f.tell
* Use read, tell, and seek to ;» wHO
control the reading process. ., £.seek(8)
8

>>> print(f.read(6))
Line 2

26



Important Python File Methods or
Attributes

Method Description

read([size]) Return data from file as a string, with optional size argument indicating the number of
bytes to read

readlines([size]) Return list of lines in the file, with optional size argument

write(str) Write passed string to file

writelines(strings) Write passed sequence of strings to the file

close() (lose the handle

flush() Flush the internal I/0 buffer to disk

seek(pos) Move to indicated file position (integer)

tell() Return current file position as integer

closed True if the file is closed

27



Writing to Files
* How to copy a text file skipping empty lines?

with open('tmp.txt', 'w') as handle:
handle.writelines(x for x in open(path) if len(x) > 1)

28



Homework 3

e Solve the homework on Files

29



Summary

3.1 Data Structures and Sequences
3.2 Functions
3.3 Files and the Operating System

30



