
Python Basics

Prof. Gheith Abandah

1

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR)
618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

Reference

• Wes McKinney, Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython, O’Reilly Media, 3rd
Edition, 2022. https://wesmckinney.com/book/
• Material: https://github.com/wesm/pydata-book

• Vanderplas, Jacob T. A Whirlwind Tour of Python. O'Reilly
Media, 2016.
• Material: https://github.com/jakevdp/WhirlwindTourOfPython/

2

https://wesmckinney.com/book/
https://github.com/wesm/pydata-book
https://github.com/jakevdp/WhirlwindTourOfPython/

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

3

Quick Python Syntax

• Comments are marked by #.

• Quotation marks (" ') can
also be used to enter
comments.

• Use \ to extend a statement
on the next line.

• Semicolon ; can optionally
terminate a statement.

4

Comments

"""
Multi-line comment often
used in documentation
"""

"Single-line Comment"

Quick Python Syntax

• In Python, code blocks
are denoted by
indentation.

• Four spaces are usually
used.

• Which code snippet
always prints x?

5

Quick Python Syntax

• Parentheses are for:
• Grouping

• Calling

6

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

7

Variables and Objects

• Python variables are pointers
to objects.

• Variable names can point to
objects of any type.

8

Variables and Objects

• If we have two
variable names
pointing to the
same mutable
object, then
changing one will
change the other
as well!

9

Variables and Objects

• Numbers, strings, and other simple types are immutable.

10

Variables and Objects

• Everything is an object

• Object have attributes and methods
accessible through the dot syntax (.)

11

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

12

Arithmetic Operators

13

Bitwise Operators

14

Comparison Operators

• Return Boolean values True or
False

15

Assignment Operators

• Assignment is evaluated from
right to left.

• There is an augmented
assignment operator
corresponding to each of the
binary arithmetic and bitwise
operators.

16

Boolean Operators

• The Boolean operators
operate on Boolean values:
• and

• or

• not

• Can be used to construct
complex comparisons.

17

Identity and Membership Operators

18

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

19

Python Scalar Types

20

Integers and Floats

• Integers are variable-precision, no overflow is possible.

• The floating-point type can store fractional numbers. They
can be defined either in standard decimal notation or in
exponential notation.

21

Strings

• Strings in Python are created with single or double quotes.

• The built-in function len() returns the string length.

• Any character in the string can be accessed through its index.

22

None and Boolean

• Functions that do not return value return None.

• None variables are evaluated to False.

• The Boolean type is a simple type with two possible values:
True and False.

• Values are evaluated to True unless they are None, zero or
empty.

23

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

24

Built-In Data Structures

• There are four built in Python data structures.

25

Lists

• List are ordered and mutable.

• A list can hold objects of any
type.

• Python uses zero-based
indexing.

• Elements at the end of the list
can be accessed with negative
numbers, starting from -1.

26

Lists

• Slicing is a means of accessing
multiple values in sub-lists.

[start : end+1 : inc]

• Negative step reverses the list.

• Both indexing and slicing can be used
to set elements as well as access
them.

27

Tuples

• Tuples are similar to lists, but are immutable.

• Can be defined with or without parentheses ().

• Functions return multiple values as tuples.

28

Dictionaries

• Dictionaries are flexible mappings of keys to values.

• They can be created via a comma-separated list of
key:value pairs within curly braces.

29

Sets

• Sets are unordered collections of unique items.

• They are defined using curly brackets { }.

• Set operations include union, intersection, difference and
symmetric difference.

30

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

31

Conditional Statements: if, elif, and
else

• if statements in Python have optional elif and else
parts.

32

for Loops

• The for loop is repeated for each index returned by the
iterator after in.

• The range() object is very useful in for loops.

33

for Loops

• The range(start, end+1, inc) has default zero start and
unit increment.

34

while Loops

• The while loop iterates as long as the condition is met.

35

break and continue: Fine-Tuning Your
Loops

• The continue statement skips the remainder of the current
loop, and goes to the next iteration.

36

Prints odd
numbers

break and continue: Fine-Tuning Your
Loops

• The break statement breaks out of the loop entirely.

37

List all Fibonacci
numbers up to 100.

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

38

Defining Functions

• Functions are defined with the def statement.

• The following function returns a list of the first N Fibonacci
numbers.

• Calling it:

39

Default Argument Values

• You can have default values for arguments.

• It can be called with our without the optional args.

40

*args and **kwargs: Flexible Arguments

• Functions can be defined using *args and **kwargs to
capture variable numbers of arguments and keyword
arguments.

41

Tuple

Dictionary

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

42

Objects and Classes

• Python is object-oriented programming language.

• Objects bundle together data and functions.

• Each Python object has a type, or class.

• An object is an instance of a class.

• Accessing instance data:

object.attribute_name

• Accessing instance methods:

object.method_name(parameters)
43

String Objects

• String objects are instances of class str.

name = input("Please enter your name: ")

print("Hello " + name.upper() + ", how are you?")

Please enter your name: Sami

Hello SAMI, how are you?

• String objects have many useful methods
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

44

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

String Methods

>>> s = " Hi "

>>> s.strip()

'Hi'

>>> 'Age: {0}, Weight: {1}'.format(20, 70)

'Age: 20, Weight: 70'

>>> s = 'This is a string'

>>> s.find('is')

2

>>> s.replace('a', 'the')

'This is the string'

45

String Objects

• Accept the escape character
\ .

• Unicode encoded.

46

s = 'The cat\'s tail \n is \t long.'
print(s)

The cat's tail
is long.

s = 'بايثون'
print(s)

بايثون

s_utf8 = s.encode('utf-8')
print(s_utf8)

b'\xd8\xa8\xd8\xa7\xd9\x8a\xd8\xab\xd9
\x88\xd9\x86'

Date and Time Objects

• The built-in Python
datetime module provides
datetime, date, and time
types.

• Such objects can be
formatted and accept - and
+ operands.

47

from datetime import datetime, date, time
dt = datetime(1999, 8, 16, 8, 30, 0)
print(dt.day)

16

dt2 = datetime(2000, 8, 16, 8, 30, 0)
delta = dt2 - dt
dt3 = dt2 + delta
print(dt3.strftime('%d/%m/%Y %H:%M'))

17/08/2001 08:30

File Objects

• Files can be opened for read, write or append.

f = open('myfile.txt', 'w')

f.write('Line 1\n')

f.write('Line 2\n')

f.close()

f = open('myfile.txt', 'r')

for line in f:

print(line.strip())

f.close()

48

Line 1
Line 2

Classes

• New class types can be defined using class keyword.
class Animal(object):

def __init__(self, name='Animal'): # Constructor
print('Constructing an animal!')
self.name = name
if name == 'Cat':

self.meows = True # Attribute
else:

self.meows = False
super(Animal, self).__init__()

def does_meow(self): # Method
return self.meows

cat = Animal('Cat')
print('It meows ', cat.does_meow())

49

Constructing an animal!
It meows True

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

50

Runtime Errors

1. Referencing an undefined
variable

2. Unsupported operation

3. Division by zero

4. Accessing a sequence element
that doesn’t exist

51

Catching Exceptions: try and except

• Runtime exceptions can be handled using the try…except
clause.

52

You can catch specific exceptions:
except ZeroDivisionError:

try…except…else…finally

• Python also support else and finally

53

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

54

Iterators

• Iterators are used in for loops and can be used using
next()

55

Iterators

• The range iterator

• Iterating over lists

• enumerate iterator

56

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

57

List Comprehensions

• A way to compress a list-building for loop into a single short,
readable line.

• Syntax: [expr for var in iterable]

58

List Comprehensions

• Lists comprehensions can be used to construct sets with no
duplicates.

• Or dictionaries

59

Outline

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

60

Generators

• A list is a collection of values, while a generator expression is
a recipe for producing values.

61

Generators

• A generator function uses yield to yield a sequence of
values.

62

Get a sequence from
the generator

Homework 2

• Solve the homework on Python Basic Programming

63

Summary

• Quick Python Syntax

• Variables and Objects

• Operators

• Built-In Types: Simple Values

• Built-In Data Structures

• Control Flow

• Defining and Using
Functions

• Objects and Classes

• Errors and Exceptions

• Iterators

• List Comprehensions

• Generators

64

