

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 6

Parallel Processors from Client to Cloud

Adapted by Prof. Gheith Abandah

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Introduction

- Goal: connecting multiple computers to get higher performance
 - Multiprocessors
 - Scalability, availability, power efficiency
- Task-level (process-level) parallelism
 - High throughput for independent jobs
- Parallel processing program
 - Single program run on multiple processors
- Multicore microprocessors
 - Chips with multiple processors (cores)

Hardware and Software

- Hardware
 - Serial: e.g., Pentium 4
 - Parallel: e.g., Core i7
- Software
 - Sequential: e.g., matrix multiplication
 - Concurrent: e.g., operating system
- Sequential/concurrent software can run on serial/parallel hardware
 - Challenge: making effective use of parallel hardware

What We've Already Covered

- §2.11: Parallelism and Instructions
 - Synchronization
- §3.6: Parallelism and Computer Arithmetic
 - Subword Parallelism
- §4.11: Parallelism via instructions
- §5.10: Parallelism and Memory Hierarchies
 - Cache Coherence

6.1 Introduction

- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

6.2 The Difficulty of Creating Parallel Processing Programs

Parallel Programming

Amdahl's Law

Scaling

Strong and Weak Scaling

Parallel Programming

- Parallel software is the problem
- Need to get significant performance improvement
 - Otherwise, just use a faster uniprocessor, since it's easier!
- Difficulties
 - Partitioning
 - Coordination
 - Communications overhead

Amdahl's Law

- Sequential part can limit speedup
- Example: 100 processors, 90× speedup?

$$T_{\text{new}} = T_{\text{parallelizable}}/100 + T_{\text{sequential}}$$

Speedup=
$$\frac{1}{(1-F_{\text{parallelizable}})+F_{\text{parallelizable}}/100}=90$$

- Solving: F_{parallelizable} = 0.999
- Need sequential part to be 0.1% of original time

Scaling Example

- Workload: sum of 10 scalars, and 10 × 10 matrix sum
 - Speed up from 10 to 100 processors
- Single processor: Time = (10 + 100) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 100/10 \times t_{add} = 20 \times t_{add}$
 - Speedup = 110/20 = 5.5 (55% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 100/100 \times t_{add} = 11 \times t_{add}$
 - Speedup = 110/11 = 10 (10% of potential)
- Assumes load can be balanced across processors

Scaling Example (cont)

- What if matrix size is 100 × 100?
- Single processor: Time = (10 + 10000) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 10000/10 \times t_{add} = 1010 \times t_{add}$
 - Speedup = 10010/1010 = 9.9 (99% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 10000/100 \times t_{add} = 110 \times t_{add}$
 - Speedup = 10010/110 = 91 (91% of potential)
- Assuming load balanced

Strong vs Weak Scaling

- Strong scaling: problem size fixed
 - As in example
- Weak scaling: problem size proportional to number of processors
 - 10 processors, 10 × 10 matrix
 - $Time = 20 \times t_{add}$
 - 100 processors, 32 × 32 matrix
 - Time = $10 \times t_{add} + 1000/100 \times t_{add} = 20 \times t_{add}$
 - Constant performance in this example

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

6.3 SISD, MIMD, SIMD, SPMD, and Vector

Flynn's Classification

Vector Processors

SIMD Instruction Extensions

Instruction and Data Streams

An alternate classification

		Data Streams	
		Single	Multiple
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86
	Multiple	MISD: No examples today	MIMD: Intel Core i7

- SPMD: Single Program Multiple Data
 - A parallel program on a MIMD computer
 - Conditional code for different processors

Vector Processors

- Highly pipelined function units
- Stream data from/to vector registers to units
 - Data collected from memory into registers
 - Results stored from registers to memory
- Example: Vector extension to RISC-V
 - v0 to v31: 32 × 64-element registers, (64-bit elements)
 - Vector instructions
 - fld.v, fsd.v: load/store vector
 - fadd.d.v: add vectors of double
 - fadd.d.vs: add scalar to each element of vector of double
- Significantly reduces instruction-fetch bandwidth

Example: DAXPY $(Y = a \times X + Y)$

Conventional RISC-V code: fld f0,a(x3) // load scalar a addi x5,x19,512 // end of array X loop: fld f1,0(x19) // load x[i] fmul.d(f1,)f1,f0 // a * x[i] f2,0(x20)fld // load y[i] fadd.d(f2)f2(f1)// a * x[i] + y[i]fsd f2,0(x20) // store y[i] addi x19,x19,8 // increment index to x addi x20,x20,8 // increment index to y x19,x5,loop // repeat if not done bltu Vector RISC-V code: fld f0, a(x3) # load scalar a vsetvli x0, x0, e64 # 64-bit-wide elements vle.v v0, 0(x19) # load vector x vfmul.vf v0, v0, f0 # vector-scalar multiply vle.v v1, 0(x20) # load vector y vfadd.vv v1, v1, v0 # vector-vector add v1, 0(x20) # store vector y vse.v

Vector vs. Scalar

- Vector architectures and compilers
 - Simplify data-parallel programming
 - Explicit statement of absence of loop-carried dependences
 - Reduced checking in hardware
 - Regular access patterns benefit from interleaved and burst memory
 - Avoid control hazards by avoiding loops
- More general than ad-hoc media extensions (such as MMX, SSE)
 - Better match with compiler technology

SIMD

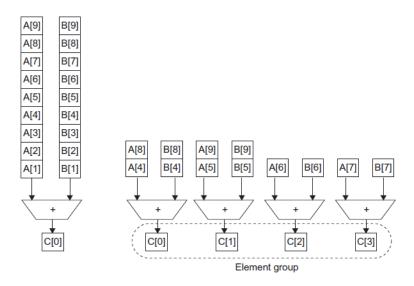
- Operate elementwise on vectors of data
 - E.g., MMX and SSE instructions in x86
 - Multiple data elements in 128-bit wide registers
- All processors execute the same instruction at the same time
 - Each with different data address, etc.
- Simplifies synchronization
- Reduced instruction control hardware
- Works best for highly data-parallel applications

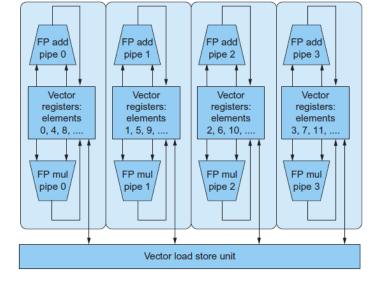
Vector vs. Multimedia Extensions

- Vector instructions have a variable vector width, multimedia extensions have a fixed width
- Vector instructions support strided access, multimedia extensions do not

Vector units can be combination of pipelined and arrayed

functional units:





- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

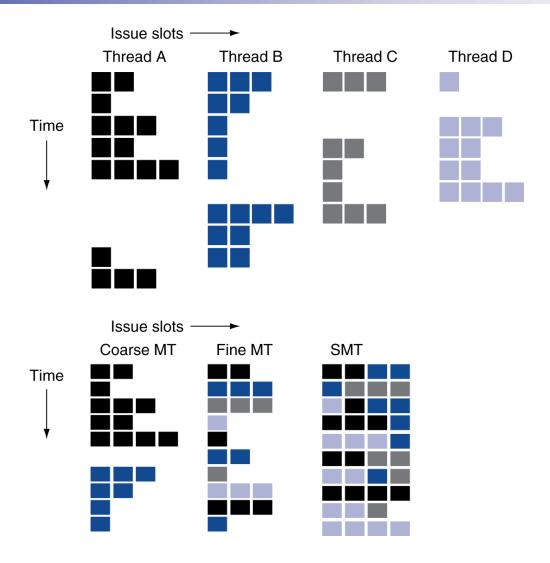
Multithreading

- Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
- Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (e.g., data hazards)

Simultaneous Multithreading

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches

Multithreading Example



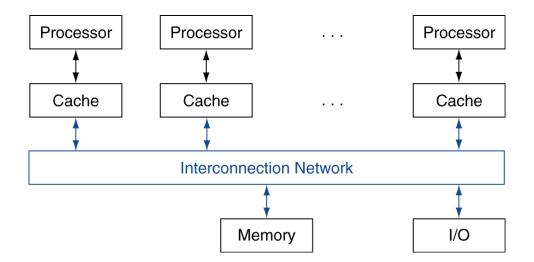
Future of Multithreading

- Will it survive? In what form?
- Power considerations ⇒ simplified microarchitectures
 - Simpler forms of multithreading
- Tolerating cache-miss latency
 - Thread switch may be most effective
- Multiple simple cores might share resources more effectively

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Shared Memory

- SMP: shared memory multiprocessor
 - Hardware provides single physical address space for all processors
 - Synchronize shared variables using locks
 - Memory access time
 - UMA (uniform) vs. NUMA (nonuniform)



Example: Sum Reduction

- Sum 64,000 numbers on 64 processor UMA
 - Each processor has ID: 0 ≤ Pn ≤ 63
 - Partition 1000 numbers per processor
 - Initial summation on each processor

- Now need to add these partial sums
 - Reduction: divide and conquer
 - Half the processors add pairs, then quarter, ...
 - Need to synchronize between reduction steps

Example: Sum Reduction

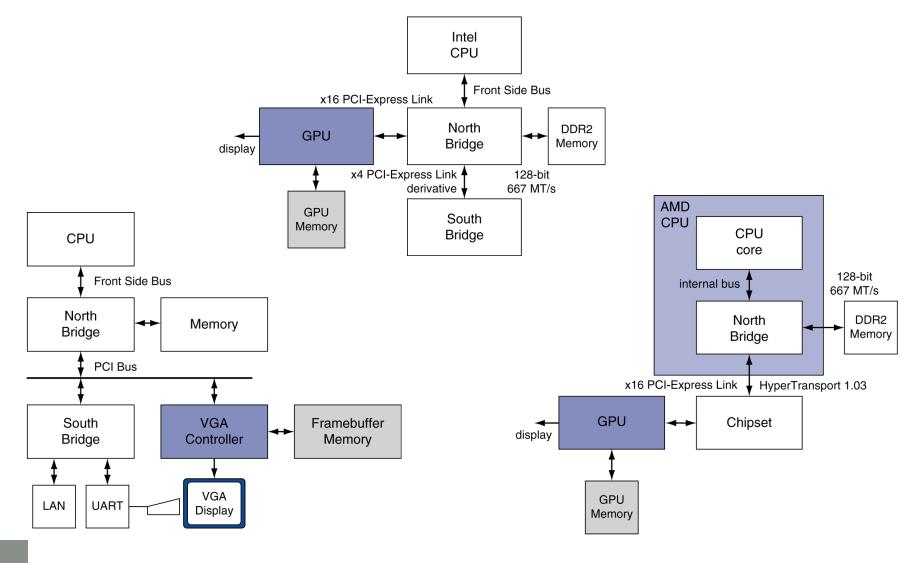
```
(half = 1) | 0
                                        (half = 2) | 0 | 1 | 2 |
half = 64;
                                        (half = 4) 0 1 2 3 4 5 6
do
  synch();
  if (ha1f%2 != 0 \&\& Pn == 0)
    sum[0] += sum[ha]f-1];
    /* Conditional sum needed when half is odd;
       Processor0 gets missing element */
  half = half/2; /* dividing line on who sums */
  if (Pn < half) sum[Pn] += sum[Pn+half];
while (half > 1);
```


- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output
- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore's Law ⇒ lower cost, higher density
 - 3D graphics cards for PCs and game consoles
- Graphics Processing Units
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Graphics in the System

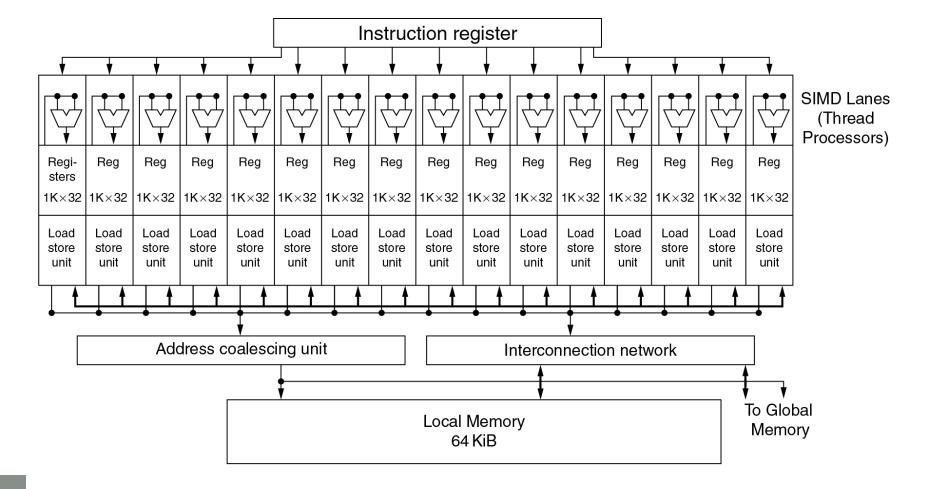


GPU Architectures

- Processing is highly data-parallel
 - GPUs are highly multithreaded
 - Use thread switching to hide memory latency
 - Less reliance on multi-level caches
 - Graphics memory is wide and high-bandwidth
- Trend toward general purpose GPUs
 - Heterogeneous CPU/GPU systems
 - CPU for sequential code, GPU for parallel code
- Programming languages/APIs
 - DirectX, OpenGL
 - C for Graphics (Cg), High Level Shader Language (HLSL)
 - Compute Unified Device Architecture (CUDA)

Example: NVIDIA Fermi

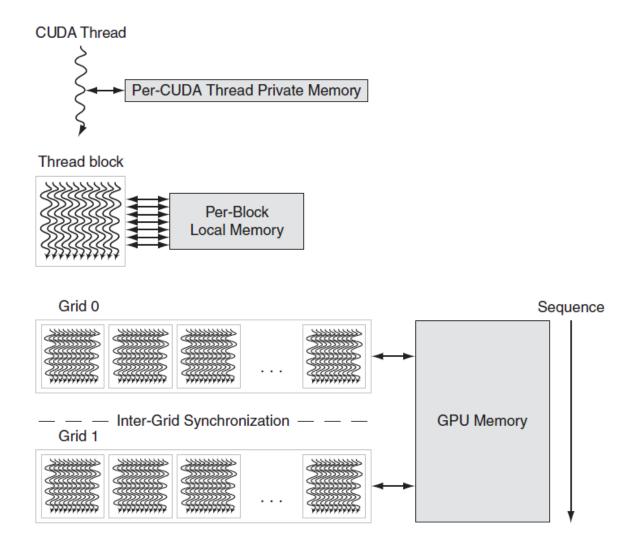
Multiple SIMD processors, each as shown:



Example: NVIDIA Tesla

- SIMD Processor: 16 SIMD lanes
- SIMD instruction
 - Operates on 32 element wide threads
 - Dynamically scheduled on 16-wide processor over 2 cycles
- 32K x 32-bit registers spread across lanes
 - 64 registers per thread context

GPU Memory Structures



Classifying GPUs

- Don't fit nicely into SIMD/MIMD model
 - Conditional execution in a thread allows an illusion of MIMD
 - But with performance degradation
 - Need to write general purpose code with care

	Static: Discovered at Compile Time	Dynamic: Discovered at Runtime
Instruction-Level Parallelism	VLIW	Superscalar
Data-Level Parallelism	SIMD or Vector	Tesla Multiprocessor

Putting GPUs into Perspective

Feature	Multicore with SIMD	GPU
SIMD processors	8 to 24	15 to 80
SIMD lanes/processor	2 to 4	8 to 16
Multithreading hardware support for SIMD threads	2 to 4	16 to 32
Typical ratio of single precision to double- precision performance	2:1	2:1
Largest cache size	48 MB	6 MB
Size of memory address	64-bit	64-bit
Size of main memory	64 GB to 1024 GB	4 GB to 16 GB
Memory protection at level of page	Yes	Yes
Demand paging	Yes	No
Cache coherent	Yes	No

Guide to GPU Terms

Туре	More descriptive name	Closest old term outside of GPUs	Official CUDA/ NVIDIA GPU term	Book definition	
Program abstractions	Vectorizable Loop	Vectorizable Loop	Grid	A vectorizable loop, executed on the GPU, made up of one or more Thread Blocks (bodies of vectorized loop) that can execute in parallel.	
	Body of Vectorized Loop	Body of a (Strip-Mined) Vectorized Loop	Thread Block	A vectorized loop executed on a multithreaded SIMD Processor, made up of one or more threads of SIMD instructions. They can communicate via Local Memory.	
	Sequence of SIMD Lane Operations	One iteration of a Scalar Loop	CUDA Thread	A vertical cut of a thread of SIMD instructions corresponding to one element executed by one SIMD Lane. Result is stored depending on mask and predicate register.	
Machine object	A Thread of SIMD Instructions	Thread of Vector Instructions	Warp	A traditional thread, but it contains just SIMD instructions that are executed on a multithreaded SIMD Processor. Results stored depending on a per-element mask.	
Machi	SIMD Instruction	Vector Instruction	PTX Instruction	A single SIMD instruction executed across SIMD Lanes.	
Processing hardware	Multithreaded SIMD Processor	(Multithreaded) Vector Processor	Streaming Multiprocessor	A multithreaded SIMD Processor executes threads of SIMD instructions, independent of other SIMD Processors.	
	Thread Block Scheduler	Scalar Processor	Giga Thread Engine	Assigns multiple Thread Blocks (bodies of vectorized loop) to multithreaded SIMD Processors.	
	SIMD Thread Scheduler	Thread scheduler in a Multithreaded CPU	Warp Scheduler	Hardware unit that schedules and issues threads of SIMD instructions when they are ready to execute; includes a scoreboard to track SIMD Thread execution.	
	SIMD Lane	Vector lane	Thread Processor	A SIMD Lane executes the operations in a thread of SIMD instructions on a single element. Results stored depending on mask.	
Memory hardware	GPU Memory	Main Memory	Global Memory	DRAM memory accessible by all multithreaded SIMD Processors in a GPU.	
	Local Memory	Local Memory	Shared Memory	Fast local SRAM for one multithreaded SIMD Processor, unavailable to other SIMD Processors.	
	SIMD Lane Registers	Vector Lane Registers	Thread Processor Registers	Registers in a single SIMD Lane allocated across a full thread block (body of vectorized loop).	

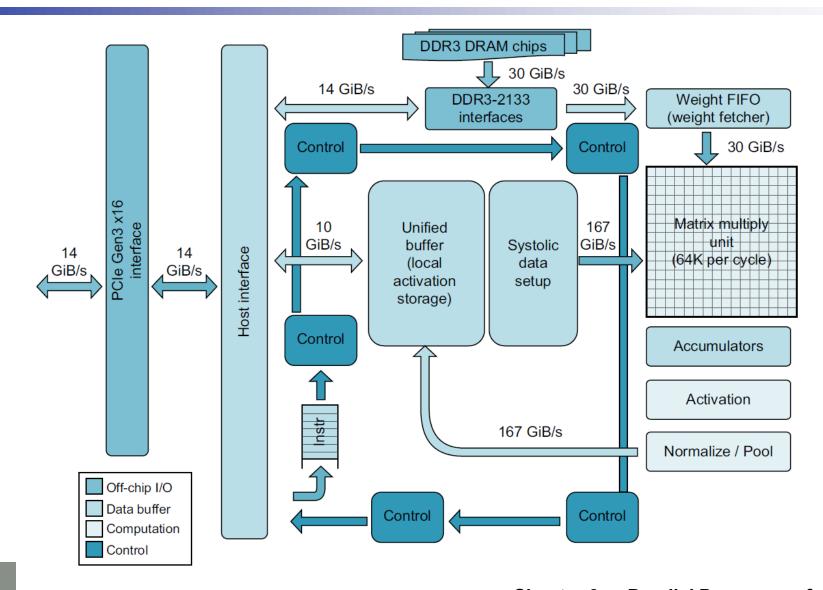
Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Domain-Specific Architectures

- Great interest now in higher performance through DSAs.
- Principles
 - Use dedicated memories to minimize the distance over which data are moved
 - Invest the resources saved from dropping advanced microarchitectural optimizations into more arithmetic units or bigger memories
 - 3. Use the easiest form of parallelism that matches the domain
 - 4. Reduce data size and type to the simplest needed for the domain
 - Use a domain-specific programming language to port code to the DSA

Example: Google TPUv1

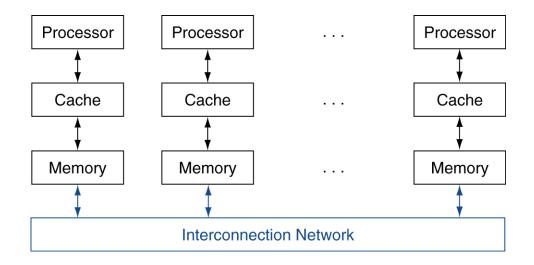


Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Message Passing

- Each processor has private physical address space
- Hardware sends/receives messages between processors



Loosely Coupled Clusters

- Network of independent computers
 - Each has private memory and OS
 - Connected using I/O system
 - E.g., Ethernet/switch, Internet
- Suitable for applications with independent tasks
 - Web servers, databases, simulations, ...
- High availability, scalable, affordable
- Problems
 - Administration cost (prefer virtual machines)
 - Low interconnect bandwidth
 - c.f. processor/memory bandwidth on an SMP

Sum Reduction (Again)

- Sum 64,000 on 64 processors
- First distribute 1000 numbers to each
 - The do partial sums

```
sum = 0;
for (i = 0; i<1000; i += 1)
  sum += AN[i];</pre>
```

- Reduction
 - Half the processors send, other half receive and add
 - The quarter send, quarter receive and add, ...

Sum Reduction (Again)

Given send() and receive() operations

- Send/receive also provide synchronization
- Assumes send/receive take similar time to addition

Grid Computing

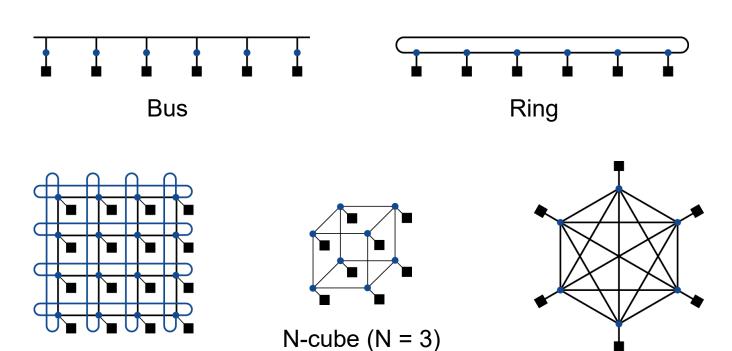
- Separate computers interconnected by long-haul networks
 - E.g., Internet connections
 - Work units farmed out, results sent back
- Can make use of idle time on PCs
 - E.g., SETI@home, World Community Grid

Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Interconnection Networks

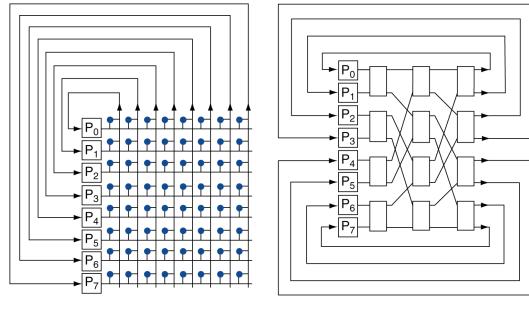
- Network topologies
 - Arrangements of processors, switches, and links



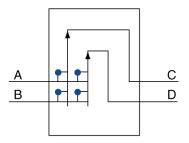
2D Mesh

Fully connected

Multistage Networks



b. Omega network



c. Omega network switch box

Network Characteristics

- Performance
 - Latency per message (unloaded network)
 - Throughput
 - Link bandwidth
 - Total network bandwidth
 - Bisection bandwidth
 - Congestion delays (depending on traffic)
- Cost
- Power
- Routability in silicon

Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Parallel Benchmarks

- Linpack: matrix linear algebra
- SPECrate: parallel run of SPEC CPU programs
 - Job-level parallelism
- SPLASH: Stanford Parallel Applications for Shared Memory
 - Mix of kernels and applications, strong scaling
- NAS (NASA Advanced Supercomputing) suite
 - computational fluid dynamics kernels
- PARSEC (Princeton Application Repository for Shared Memory Computers) suite
 - Multithreaded applications using Pthreads and OpenMP

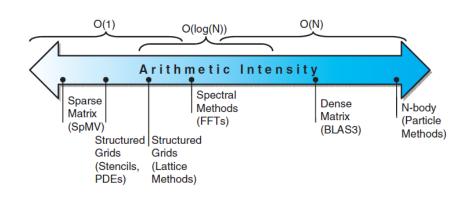
Code or Applications?

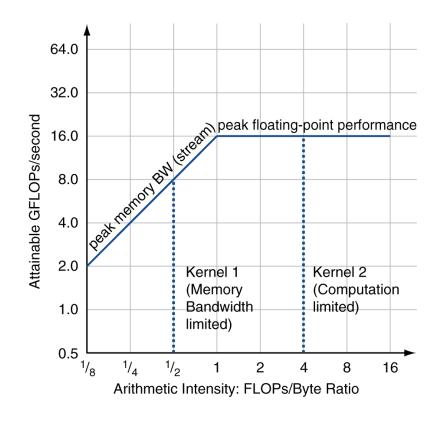
- Traditional benchmarks
 - Fixed code and data sets
- Parallel programming is evolving
 - Should algorithms, programming languages, and tools be part of the system?
 - Compare systems, provided they implement a given application
 - E.g., Linpack, Berkeley Design Patterns
- Would foster innovation in approaches to parallelism

Modeling Performance

- Assume performance metric of interest is achievable GFLOPs/sec
 - Measured using computational kernels from Berkeley Design Patterns
- Arithmetic intensity of a kernel
 - FLOPs per byte of memory accessed
- For a given computer, determine
 - Peak GFLOPS (from data sheet)
 - Peak memory bytes/sec (using Stream benchmark)

Roofline Diagram



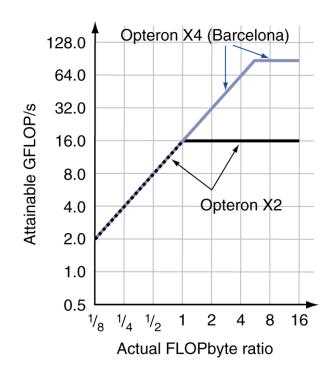


Attainable GPLOPs/sec

= Min (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Comparing Systems

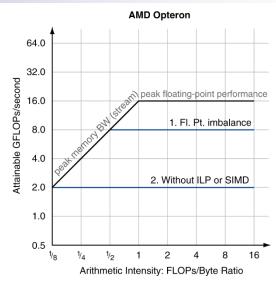
- Example: Opteron X2 vs. Opteron X4
 - 2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs. 2.3GHz,
 1 × 2 SIMD vs. 2 × 2 SIMD
 - Same memory system

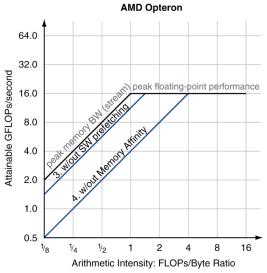


- To get higher performance on X4 than X2
 - Need high arithmetic intensity
 - Or working set must fit in X4's2MB L-3 cache

Optimizing Performance

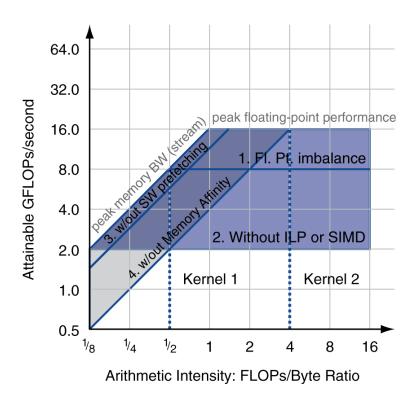
- Optimize FP performance
 - Balance adds & multiplies
 - Improve superscalar ILP and use of SIMD instructions
- Optimize memory usage
 - Software prefetch
 - Avoid load stalls
 - Memory affinity
 - Avoid non-local data accesses





Optimizing Performance

Choice of optimization depends on arithmetic intensity of code



- Arithmetic intensity is not always fixed
 - May scale with problem size
 - Caching reduces memory accesses
 - Increases arithmetic intensity

Contents

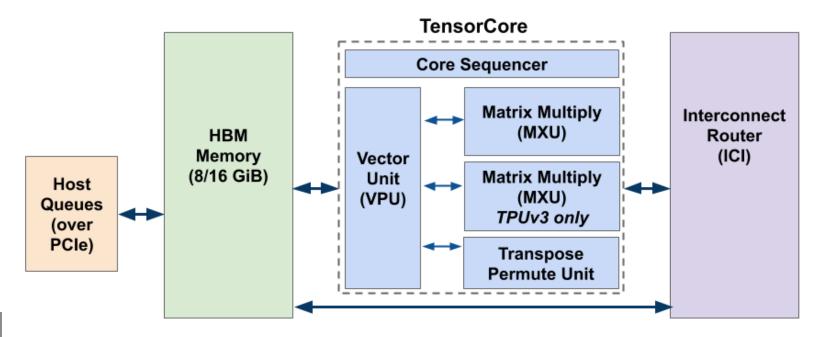
- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

TPUv3 vs Volta for DNN

Feature	<i>TPUv1</i>	TPUv3	Volta
Peak TeraFLOPS / Chip	92 (8b int)	123 (16b), 14 (32b)	125 (16b),16 (32b)
Network links x Gbits/s / Chip		4 x 656	6 x 200
Max chips / supercomputer		1024	Varies
Clock Rate (MHz)	700	940	1530
TDP (Watts) / Chip	75	450	450
Die Size (mm²)	<331	<648	815
Chip Technology	28 nm	>12 nm	12 nm
Memory size (on-/off-chip)	28 MiB / 8 GiB	37 MiB /32 GiB	36 MiB / 32 GiB
Memory GB/s/Chip	34	900	900
MXUs / Core, MXU Size	1 256x256	2 128x128	8 4x4
Cores / Chip	1	2	80
Chips / CPU Host	4	8	8 or 16

TPUv3

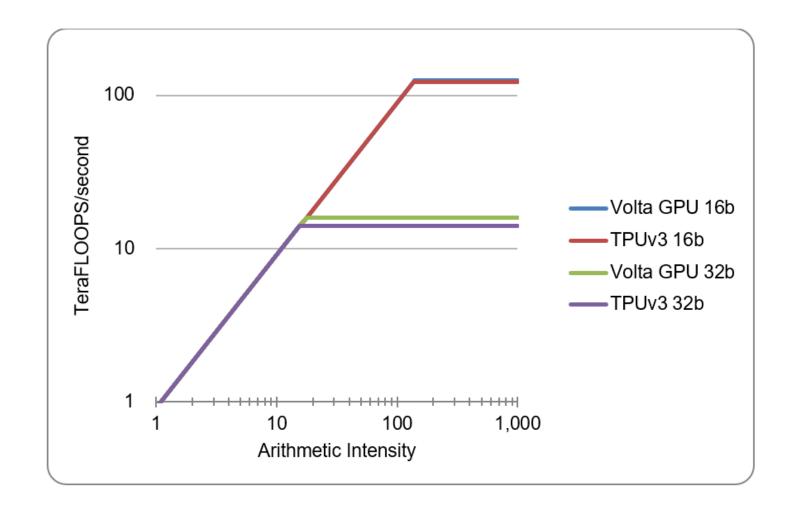
- Core Sequencer:
 - VLIW with software-managed memory
 - 322-bit VLIW w/8 operations:
 - 2 x scalar ALU, 2 x vector ALU, vector load and store, 2 x queue operations for matrix multiply/transpose unit



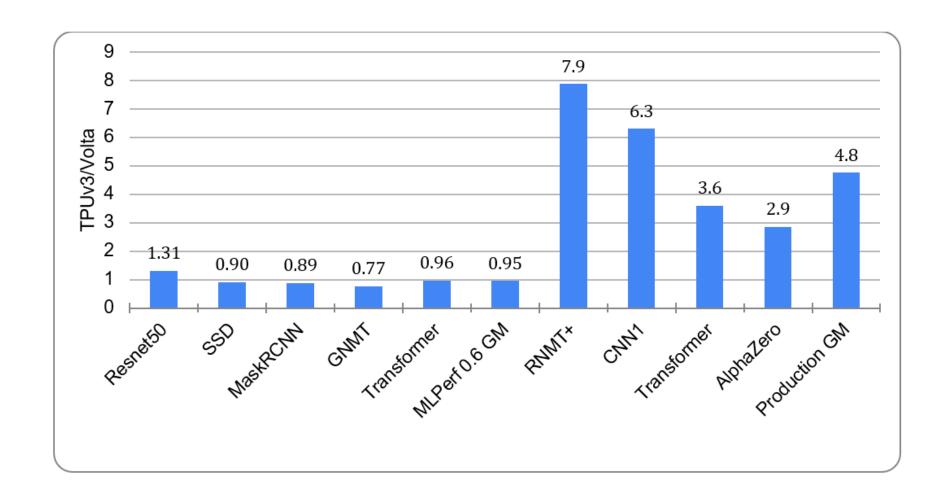
TPUv3

- Vector Processing Unit (VPU)
 - Uses data-level parallelism (2D matrix and vector functional units) and instruction-level parallelism (8 operations per instruction)
 - Uses on-chip vector memory (Vmem) with 32K 128 x 32-bit elements (16 MiB)
 - 32 2D vector registers (Vregs) that each contain 128 x 8 32-bit elements (4 KiB)
- MXU
 - Produces 32-bit FP products from 16-bit FP inputs that accumulate in 32 bits
 - Two MXUs per TensorCore
- The Transpose Reduction Permute Unit
 - 128x128 matrix transposes, reductions, and permutations

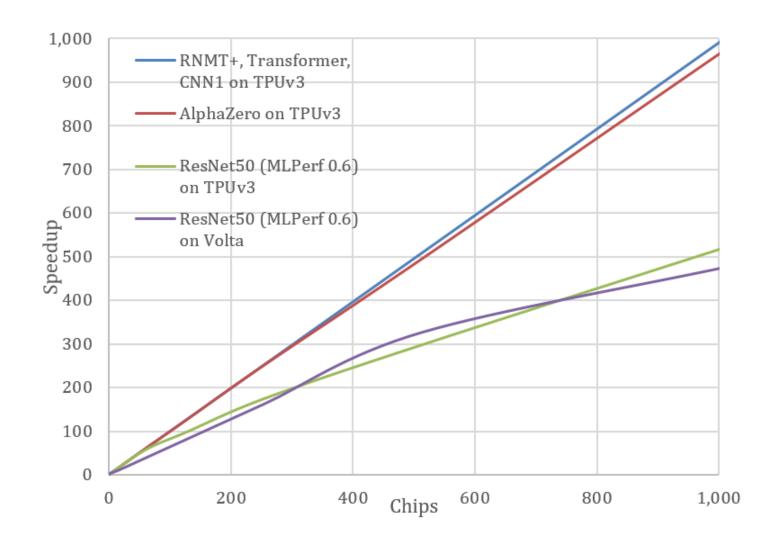
TPUv3 vs Volta for DNN



Speedup of TPUv3 vs Volta



TPUv3 and Volta Scalability



Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Fallacies

- F: Amdahl's Law doesn't apply to parallel computers
 - Since we can achieve linear speedup
 - But only on applications with weak scaling
- F: Peak performance tracks observed performance
 - Marketers like this approach!
 - But compare Xeon with others in example
 - Need to be aware of bottlenecks

Fallacies

- F: Not developing the software to take advantage of, or optimize for, a novel architecture
 - Unexpected bottlenecks, e.g. serialization of page tables
 - Usability for DSAs
- F: You can get good vector performance without proving memory bandwidth
 - Beware of the sloping part of the roofline

Pitfalls

- P: Not developing the software to take account of a multiprocessor architecture
 - Example: using a single lock for a shared composite resource
 - Serializes accesses, even if they could be done in parallel
 - Use finer-granularity locking

Pitfalls

- P: Assuming the ISA completely hides the physical implementation properties
 - Attacker can examine state changes caused by instructions that are rolled back or performance differences caused by intermixing of instructions from different programs on the same server
 - Speculation
 - Caching
 - Hardware multithreading

Contents

- 6.1 Introduction
- 6.2 The Difficulty of Creating Parallel Processing Programs
- 6.3 SISD, MIMD, SIMD, SPMD, and Vector
- 6.4 Hardware Multithreading
- 6.5 Multicore and Other Shared Memory Multiprocessors
- 6.6 Introduction to Graphics Processing Units
- 6.7 Domain-Specific Architectures
- 6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
- 6.9 Introduction to Multiprocessor Network Topologies
- 6.11 Multiprocessor Benchmarks and Performance Models
- 6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
- 6.14 Fallacies and Pitfalls
- 6.15 Concluding Remarks

Concluding Remarks

- Goal: higher performance by using multiple processors
- Difficulties
 - Developing parallel software
 - Devising appropriate architectures
- SaaS importance is growing and clusters are a good match
- Performance per dollar and performance per Joule drive both mobile and WSC

Concluding Remarks (con't)

- SIMD and vector operations match multimedia applications and are easy to program
- Adding 2 cores/chip every 2 years.
- Doubling SIMD operations every 4 years.

