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Introduction

Goal: connecting multiple computers to get higher
performance

Multiprocessors

Scalability, availability, power efficiency
Task-level (process-level) parallelism

High throughput for independent jobs
Parallel processing program

Single program run on multiple processors
Multicore microprocessors

Chips with multiple processors (cores)
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Hardware and Software

Hardware

Serial: e.g., Pentium 4

Parallel: e.g., Core i7
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., operating system
Sequential/concurrent software can run on serial/parallel
hardware

Challenge: making effective use of parallel hardware
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What We’ve Already Covered
§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Subword Parallelism

§4.11: Parallelism via instructions

§5.10: Parallelism and Memory Hierarchies
Cache Coherence
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Parallel Programming

Parallel software is the problem

Need to get significant performance improvement
Otherwise, just use a faster uniprocessor, since it's easier!

Difficulties
Partitioning
Coordination
Communications overhead
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Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T =T /100 + T

parallelizable sequential

1

Speedup=
)+F.

-90
(1-F /100

parallelizable rallelizable

SOIVing: |:parallelizable =0.999
Need sequential part to be 0.1% of original time
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Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix sum
Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_,,
10 processors
Time =10 x t_,, + 100/10 x t_,, = 20 x t_,,
Speedup = 110/20 = 5.5 (55% of potential)
100 processors
Time = 10 x t_y, + 100/100 x t_, = 11 X t g,
Speedup = 110/11 = 10 (10% of potential)
Assumes load can be balanced across processors
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Scaling Example (cont)

What if matrix size is 100 x 1007?
Single processor: Time = (10 + 10000) x t_ 4
10 processors

Time =10 x t_44, + 10000/10 x t_44, = 1010 x t_g
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time =10 x t_, + 10000/100 x t_,, = 110 x t_ 4
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced
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Strong vs Weak Scaling

Strong scaling: problem size fixed
As In example

Weak scaling: problem size proportional to number of
processors
10 processors, 10 x 10 matrix
Time =20 x t_ 4
100 processors, 32 x 32 matrix
Time = 10 x t 4, + 1000/100 X t_, =20 % t_,

Constant performance in this example
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Instruction and Data Streams

An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Core i7

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors
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Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
vO to v31: 32 x 64-element registers, (64-bit elements)

Vector instructions

fld.v, fsd.v: load/store vector
fadd.d.v: add vectors of double
fadd.d.vs: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth
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Example: DAXPY (Y = a x X + Y)

Conventional RISC-V code:
f1d f0,a(x3) // load scalar a
addi x5,x19,512 // end of array X
Toop: fld f1,0(x19) // load x[i]

fmu.d (FL,) // a * x[i]

f1d // load y[i]

fadd. // a * x[i] + y[il

fsd 0(x20) // store y[i]

addi x19,x19,8 // increment index to X
addi x20,x20,8 // increment index to y

bltu x19,x5,1oop // repeat if not done
Vector RISC-V code:

fld fO0, a(x3) # load scalar a

vsetvli x0, x0, e64 # 64-bit-wide elements
vie.v vO, 0(x19) # load vector x

vfmul.vf v0, vO, fO # vector-scalar multiply
vie.v vl, 0(x20) # load vector y

vfadd.vwv vl1, vl, vO # vector-vector add
vse.v vl, 0(x20) # store vector y
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Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming
Explicit statement of absence of loop-carried dependences
Reduced checking in hardware

Regular access patterns benefit from interleaved and burst
memory

Avoid control hazards by avoiding loops

More general than ad-hoc media extensions (such as
MMX, SSE)

Better match with compiler technology
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| SIMD
Operate elementwise on vectors of data

E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same instruction at the same
time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware
Works best for highly data-parallel applications
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Vector vs. Multimedia Extensions

Vector instructions have a variable vector width, multimedia
extensions have a fixed width

Vector instructions support strided access, multimedia extensions

do not
Vector units can be combination of pipelined and arrayed
funCtionaI unitS- Lane O Lane 2 Lane 3 Lane 4
e T T 'd Y
@ @ FP add FP add FP add FP add
A[8] B[8] pipe 0 | pipe 1} pipe 2 | pipe 3 |
| oo L A I e
Al6] B[6] Vector Vector Vector Vector
ﬁ % registers: registers: registers: registers:
1 — elements elements elements elements
ﬁ % 0,4,8, ... 1,59, ... 2,6,10, ... 3,7, 11, ...
A3] B[3]
)l (ool v T
— FP mul FP mul FP mul FP mul
Al1] B[1] pipe 1 \ pipe 2 |' \ pipe 3?
e .
C[0] Vector load store unit
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Multithreading

Performing multiple threads of execution in parallel
Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed
Coarse-grain multithreading
Only switch on long stall (e.g., L2-cache miss)
Simplifies hardware, but doesn’t hide short stalls (e.g., data hazards)
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Simultaneous Multithreading

In multiple-issue dynamically scheduled processor
Schedule instructions from multiple threads

Instructions from independent threads execute when function
units are available

Within threads, dependencies handled by scheduling and
register renaming

Example: Intel Pentium-4 H

Two threads: duplicated registers, shared function units and
caches
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Time

Time

Issue slots ——
Thread A

Thread B

Issue slots ——
Coarse MT

Fine MT

Multithreading Example

Thread C

w
=
|
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Future of Multithreading

Will it survive? In what form?

Power considerations = simplified microarchitectures
Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share resources more
effectively
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Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor - Processor
A A \

Y A\ Y
Cache Cache Cache
A A A
Y Y Y
Interconnection Network

A A
L \
Memory I/O
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Example: Sum Reduction

Sum 64,000 numbers on 64 processor UMA
Each processor has ID: 0 < Pn <63
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] = 0;
for (1 = 1000%*Pn;
1 < 1000*(Pn+1); 1 += 1)
sum[Pn] += A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps
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Example: Sum Reduction

0
™~
(half = 1) [0][4
N\,
(half = 2) [0][1][2][3
half = 64; s
do (half = 4) [o][1][2 ;?fﬁg]e 7

synch(Q);
1t (half%2 !'= 0 && Pn == 0)
sum[0] += sum[half-1];
/% Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1line on who sums */
if (Pn < half) sum[Pn] += sum[Pn+half];
while Chalf > 1);
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History of GPUs

Early video cards

Frame buffer memory with address generation for video output
3D graphics processing

Originally high-end computers (e.g., SGl)

Moore’s Law = lower cost, higher density

3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization
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Graphics In the System

Intel
CPU

A
Front Side Bus

x16 PCI-Express Link

North | DbR2
display Bridge | Memory
x4 PCl-Express Link 4 128-bit
derivative y 667 MT/s
GPU AMD
Memory South CPU
CPU Bridge CPU
core
A i
Front Side Bus ' i 128-bit
v ! u internal bus 667 MT/s
Bridge Bridge Memory
A
PCI Bus A
A x16 PCI-Express Link y HyperTransport 1.03
\J
South Framebuffer . Chipset
Bridge Memory display

;

VGA
LAN UART _‘ﬁ Display
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‘ GPU Architectures
Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems

CPU for sequential code, GPU for parallel code
Programming languages/APls

DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language (HLSL)

Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Fermi

Multiple SIMD processors, each as shown:

Instruction register
I [

Y ¥ Y y Y y y Y Y Y \ y y y ¥

0 S e

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters

1K= 32 [1Kx32 [1Kx32 |[1Kx32 |[1Kx32 |1Kx32 | 1Kx32 [1Kx32 [1Kx 32 [1Kx32 [ 1Kx32 [1Kx32 | 1Kx32 | IKx32 | 1Kx32 | 1Kx 32

Load Load Load Load | Load | Load Load Load Load Load | Load | Load Load Load Load | Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

Y Y

Address coalescing unit Interconnection network
A [
Y Y ] *
To Global
Local Memory
64KiB Memory
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Example: NVIDIA Tesla

SIMD Processor: 16 SIMD lanes

SIMD instruction

Operates on 32 element wide threads
Dynamically scheduled on 16-wide processor over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 35



GPU Memory Structures

CUDA Thread

Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory

Grid 0 Sequence
[« LCLCT L0 (4 L5 (A«
[« [4 = [ -‘C -’C . :‘C =
FREE ] ) ) 5 PR
[ o (o oo oo ol o £ Lo L
FPFPFFFPFFY
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
Lo (o Lo L L4 £
St | e < oy e
EFEFEEE] EXF) ] FAFS ) FERD
[fxaxadaaaad (A L e s .o &
FFFFFPFrFe FrFFFFFFFrey FPFPFFP ¥y L
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Classifying GPUs

Don't fit nicely into SIMD/MIMD model
Conditional execution in a thread allows an illusion of

MIMD

But with performance degradation
Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level VLIW Superscalar
Parallelism

Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism
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Putting GPUs into Perspective
_ Featwre | MulticorewithSIMD | GPU___

SIMD processors 8to 24 15 to 80
SIMD lanes/processor 2to4 8 to 16
Multithreading hardware support for SIMD 2104 16 to 32
threads

Typical ratio of single precision to double- 2:1 2:1
precision performance

Largest cache size 48 MB 6 MB
Size of memory address 64-Dbit 64-bit
Size of main memory 64 GB to 1024 GB 4 GB to 16 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Cache coherent Yes No
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Guide to GPU Terms

More deseriptive | Closest nH term Official CUDAS
Vectorizable Vectorizabls Loop A vectorizable loop, sxecutsd on the GPLL mads

@ Leop up of one or mors Thead Blocks (bodies of

i vectorized loop) that can exscute in parallel.

o

E Body of Body of & Thread Block A vectorized loop exscuted on & multithreaded

B Vectorized Loop | (5t p-Mined) SIMD Procsssor, made up of one or mane threads

= Vectorized Loop of SIMD instructions. They can communicate via

E Loszal Memaory.

? Sequence of One ieration of CLIDA Thread A vertical cut of a thread of SIMD instuctions
SIMD Lane a Scalar Loop cormesponding to one dement sxscutsd by one
Opsrations SIMD Lane. Result is stored depending on mask

arl predicate register.

- A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD

ki SIMD Instructions instructions that are exscuted on & multithreadsd

5 Irstructions SIMD Procsssor. Results stored depanding on &

z perslement mask.

E SIMD Vector Instruction | PTX Instruction A single SIMD instruction sxecutsd across SIMD
Iretruction Lanes.

Multithresded [Multithreaded) Streaming A multithrzaded SIMD Procsssor sxscutes
SIMD Vector Processor Multiprecessor threads of SIMD instructions, ndspendent of
Processor other SIMD Processors,

Thread Black Sealar Processor Giga Thread Assigns multiple Thread Blochks (bodiss of

g Scheduler Engine vectorized loop) to rultithreadsd SIMD

= Procassors,

£ SIMD Thread Thread scheduler | Warp Schedular Hardware unit that schedules and issues threads

o Scheduler in a Multithreaded of SIMD instructions when they ars ready to

-] ZPU execute; includes a scorsboard to track SIMD

g Thread execution.

o SIMD Lane Vector lane Thread Procsssor A SIMD Lane executes the opsrations in & thread
of SIMD instructions on a single elemsnt. Results
storsd depending on rmask.

GPU Mamory Main Memaory Global Memary DRAM rmemory accassible by all multithreaded

o SIMD Precsssors ina GPU.

-

3 Lezal Mamory Local Memory Shared Mamary Fast local SRAM for ane ru tithreaded SIMD

E‘ Procassor, unavailabls to other SIMD Precessors,

&

= SIMD Lane Vector Lans Thread Processor Registers in a single SIMD Lans allocatsd across
Registers Registers Registers a full thread block (body of wectorized boop).
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Domain-Specific Architectures

Great interest now in higher performance through DSAs.

Principles

Use dedicated memories to minimize the distance over
which data are moved

Invest the resources saved from dropping advanced
microarchitectural optimizations into more arithmetic units or
bigger memories

Use the easiest form of parallelism that matches the domain

Reduce data size and type to the simplest needed for the
domain

Use a domain-specific programming language to port code
__lo the DSA
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Example: Google TPUv1
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30 GiB/s

30 GiB/s

[ Weight FIFO ]

(weight fetcher)
‘ 30 GiB/s
Unified 167 A Tﬂi"“‘ﬁﬁ"ﬁp Y
14 14 ® buffer Systolic |GiB/s i
GiB/s GiB/s 8 (local data 4K per cycle)
H H E activation setup
£ storage)

™
o
I

-
.

Accumulators

N J [
Activation
167 GiB/s )
Normalize / Pool

—

[] off-chip 170
|:| Data buffer
|:| Computation

.Comrol
M( Chapter 6 — Parallel Processors from Client to Cloud — 42

MORGAN KAUFMANN



Contents

6.8 Clusters, Warehouse Scale Computers, and Message-Passing Multiprocessors
6.9 Introduction to Multiprocessor Network Topologies

6.11 Multiprocessor Benchmarks and Performance Models

6.12 Benchmarking the Google TPUv3 Supercomputer and NVIDIA Volta GPU Cluster
6.14 Fallacies and Pitfalls

6.15 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 43



Message Passing

Each processor has private physical address

space
Hardware sends/receives messages between
processors
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Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...
High availability, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP
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Sum Reduction (Again)

Sum 64,000 on 64 processors

First distribute 1000 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 += 1)
sum += AN[1];
Reduction

Half the processors send, other half receive and add
The quarter send, quarter receive and add, ...
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Sum Reduction (Again)

Given send() and receive() operations

1imit = 64; half = 64;/* 64 processors */
do
half = (half+1)/2; /* send vs. receive
dividing Tine */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum += receive();
Timit = half; /* upper 1imit of senders */
while (half > 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition
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Grid Computing

Separate computers interconnected by long-haul networks
E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid
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Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

R T

Bus Ring

(_’\ N N N

T (a1 T

Tt TaTa

Tt TalTa

|

s }'“hﬁ N-cube (N = 3)

2D Mesh

Fully connected
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Multistage Networks
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Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon
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Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism

SPLASH: Stanford Parallel Applications for Shared Memory

Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite

computational fluid dynamics kernels

PARSEC (Princeton Application Repository for Shared Memory
Computers) suite

Multithreaded applications using Pthreads and OpenMP
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Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages, and tools be part
of the system?

Compare systems, provided they implement a given application
E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 55



Modeling Performance

Assume performance metric of interest is achievable
GFLOPs/sec

Measured using computational kernels from Berkeley Design
Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed
For a given computer, determine

Peak GFLOPS (from data sheet)
Peak memory bytes/sec (using Stream benchmark)
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Roofline Diagram
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Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2% FP performance/core, 2.2GHz vs. 2.3GHz,
1x2SIMDvs.2x 2 SIMD

Same memory system

128.0 }  Opteron X4 (Ba@na)

o0 } To get higher performance on
32.0 / X4 than X2

% 16.0 Need high arithmetic intensity
é 8.0 \/ Or working set must fit in X4'’s
£ 40 Opteron X2 2MB L-3 cache
< 20

1.0

0.5

g Wy 1, 12 4 8 16
Actual FLOPbyte ratio
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Optimizing Performance

AMD Opteron

Optimize FP performance
Balance adds & multiplies

R peak floating-point performance
,bé‘

Improve superscalar ILP and use of
SIMD inStrUCtionS é 2.0 QG 2. Without ILP or SIMD

T 1 2 4 8 16

Optimize memory usage
Software prefetch
Avoid load stalls

Memory affinity
Avoid non-local data accesses

32.0

16.0

Attainable GFLOPs/second

T 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio
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Optimizing Performance

Choice of optimization depends on arithmetic
intensity of code

A

Arithmetic intensity is not
always fixed
é 80 May scale with problem size
f Yl Caching reduces memory
3" L accesses

;: _ Increases arithmetic intensity

Vg Vg 12 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio
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TPUv3 vs Volta for DNN

Feature TPUvI] TPUw3 Volta
Peak TeraFLOPS / Chip 92 (8b int) 123 (16b). 14 (32b) 125 (16b).16 (32b)
Network links x Ghits/s / Chup -- 4 x 656 6x 200
Max chips / supercomputer -- 1024 Varies
Clock Rate (MHz) 700 940 1530
TDP (Watts) / Chip 75 450 450
Die Size (mm-) <331 <648 815
Chip Technology 28 nm =12 nm 12 nm
Memory size (on-/off-chip) 28 MiB/ 8 GiB 3TMiB/32 GiB 36 MiB /32 GiB
Memory GB/s/Chup 34 200 200
MXUs / Core, MXU Size 1 256x256 2 128x128 8 4x4
Cores / Chip 1 2 80
Chips / CPU Host 4 8 8 or 16
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TPUv3

Core Sequencer:

VLIW with software-managed memory
322-bit VLIW w/8 operations:

2 x scalar ALU, 2 x vector ALU, vector load and store, 2 x queue operations for

matrix multiply/transpose unit

TensorCore

_______________________

Core Sequencer

(MXU) Router
(IC1)

HBM
Memory
T (8/16 GiB)

Queues
(over
PCle)

| I
| I
| I
| I
: <« Matrix Multiply | Interconnect
I l
| I
| I

Vector
Unit Matrix Multiply

(VPU) (MXU)

TPUv3 only

Transpose
Permute Unit
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TPUv3

Vector Processing Unit (VPU)
Uses data-level parallelism (2D matrix and vector functional units) and
instruction-level parallelism (8 operations per instruction)
Uses on-chip vector memory (Vmem) with 32K 128 x 32-bit elements
(16 MiB)
32 2D vector registers (Vregs) that each contain 128 x 8 32-bit elements
(4 KiB)

MXU
Produces 32-bit FP products from 16-bit FP inputs that accumulate in
32 bits
Two MXUs per TensorCore

The Transpose Reduction Permute Unit
128x128 matrix transposes, reductions, and permutations
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TPUv3 vs Volta for DNN

TeraFLOOPS/second

100

10

—\/0lta GPU 16b

10 100
Arithmetic Intensity

= TPUV3 16b
- \/0lta GPU 32b
= TPUV3 32b

1,000
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Speedup of TPUv3 vs Volta

ar . A
o .
7 6.3
S 6
S5 48
o
> 4 3.6
T 2.9
£ 3
2
317090 089 77 096 095 I I
1
0 J . J . - ] } . } } } }
S K > & ¢ N & & L
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N N '@g"-’ <& « >
\ Y

Chapter 6 — Parallel Processors from Client to Cloud — 66



TPUv3 and Volta Scalability

1,000
—— RNMT+, Transformer,
900 CNN1 on TPUv3
—— AlphaZero on TPUv3
800
700 ResNet50 (MLPerf 0.6)
on TPUv3
600 ResNet50 (MLPerf 0.6)

on Volta

Speedup
S
=

400
300
200

100

0 200 400 Chips 600 800 1,000
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Fallacies

F: Amdahl’'s Law doesn’t apply to parallel computers
Since we can achieve linear speedup
But only on applications with weak scaling

F: Peak performance tracks observed performance
Marketers like this approach!

But compare Xeon with others in example
Need to be aware of bottlenecks
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Fallacies

F: Not developing the software to take advantage of, or
optimize for, a novel architecture

Unexpected bottlenecks, e.g. serialization of page tables
Usability for DSAs
F: You can get good vector performance without proving
memory bandwidth
Beware of the sloping part of the roofline
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Pitfalls

P: Not developing the software to take account of a
multiprocessor architecture
Example: using a single lock for a shared composite resource

Serializes accesses, even if they could be done in parallel
Use finer-granularity locking
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Pitfalls

P: Assuming the ISA completely hides the physical
iImplementation properties

Attacker can examine state changes caused by instructions that
are rolled back or performance differences caused by

intermixing of instructions from different programs on the same
server

Speculation
Caching

Hardware multithreading
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Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties
Developing parallel software

Devising appropriate architectures

SaaS importance is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC
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Concluding Remarks (con’t)

SIMD and vector operations 1000

. . . . —#— MIMD*SIMD (32b) e
match multimedia applications ¢ MIMD'SIMD (64b) Ve
and are easy to program SIMD (32b) V4

—+— SIMD (64 b) /‘k""
-= MIMD

Adding 2 cores/chip every 2 ': .
years. :
Doubling SIMD operations every %
4 years. g 10

1 | | | |
2003 2007 2011 2015 2019 2023
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