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Five-Stage Pipeline

F: Fetch instruction from the instruction memory

D: Decode instruction and read operands

E: Execute operation or calculate address

M: Memory access

W: Write result to the register
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Five-Stage Pipeline
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Pipelined Control

◼ Control signals derived from instruction

◼ As in single-cycle implementation
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Pipelined Control
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Hazards

◼ Situations that prevent starting the next instruction in the 
next cycle

◼ Structure hazards

◼ A required resource is busy

◼ Data hazard

◼ Need to wait for previous instruction to complete its data 
read/write

◼ Control hazard

◼ Deciding on control action depends on previous instruction
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Data Hazards in ALU Instructions

◼ Consider this sequence:

sub  x2, x1,x3
and  x12,x2,x5
or   x13,x6,x2
add  x14,x2,x2
sd x15,100(x2)

◼ There are multiple true data dependencies, read-after-

write (RAW), on register x2.

◼ We can resolve hazards with stalls or forwarding.
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Assume no forwarding (except through the Register File) and 

hazards are solved by stalls

1 2 3 4 5 6 7 8 9 10
sub  x2, x1,x3 F D E M W
and  x12,x2,x5 F
or   x13,x6,x2

add  x14,x2,x2

sd   x15,100(x2)
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Dependencies & Forwarding
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Forwarding Paths



With Forwarding

1 2 3 4 5 6 7 8 9 10
sub  x2, x1,x3 F D E M W
and  x12,x2,x5 F
or   x13,x6,x2

add  x14,x2,x2

sd   x15,100(x2)
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Load-Use Data Hazard

◼ Can’t always avoid stalls by forwarding

◼ If value not computed when needed

◼ Can’t forward backward in time!



Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
sub  x4,x1,x5 F D
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Load-Use Hazard Detection

◼ Check when using instruction is decoded in ID stage

◼ ALU operand register numbers in ID stage are given by

◼ IF/ID.RegisterRs1, IF/ID.RegisterRs2

◼ Load-use hazard when

◼ ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs2))

◼ If detected, stall and insert bubble



Stall Circuit

Chapter 4 — The Processor — 19



Chapter 4 — The Processor — 20

How to Stall the Pipeline

◼ Force control values in ID/EX register to 0

◼ EX, MEM and WB do nop (no-operation)

◼ Prevent update of PC and IF/ID register

◼ Using instruction is decoded again

◼ Following instruction is fetched again

◼ 1-cycle stall allows MEM to read data for ld

◼ Can subsequently forward to EX stage
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Load-Use Data Hazard

Stall inserted 

here
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Datapath with Hazard Detection
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Stalls and Performance

◼ Stalls reduce performance

◼ But are required to get correct results

◼ Compiler can arrange code to avoid hazards and stalls

◼ Requires knowledge of the pipeline structure

The BIG Picture



Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
sub  x4,x1,x5 F D D E M W
add  x7,x5,x6 F F D E M W
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Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
add  x7,x5,x6 F D
sub  x4,x1,x5
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Code Scheduling to Avoid Stalls

◼ Reorder code to avoid use of load result in the next 

instruction

◼ C code for a = b + e; c = b + f;

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles



Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM 

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 27



Contents

4.9 Control Hazards

Branch Hazards

Reducing Branch Delay

Branch Prediction

Dynamic Branch Prediction

Calculating Branch Target

Chapter 4 — The Processor — 28



Chapter 4 — The Processor — 29

Branch Hazards

◼ If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)



Solving branches in the Memory stage

1 2 3 4 5 6 7 8 9 10
40 beq  x1,x0,16 F D E M W
44 and  x12,x2,x5 F
48 or   x13,x6,x2

52 add  x14,x2,x2

72 ld   x4,100(x7)
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Assume taken branch
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Reducing Branch Delay

◼ Move hardware to determine outcome to ID stage

◼ Target address adder

◼ Register comparator

◼ Example: branch taken
36:  sub  x10, x4, x8
40:  beq x1,  x3, 16  // PC-relative branch

// to 40+16*2=72
44:  and  x12, x2, x5
48:  or   x13, x2, x6
52:  add  x14, x4, x2
56:  sub  x15, x6, x7

...
72:  ld x4, 50(x7)
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Example: Branch Taken
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Example: Branch Taken



Solving branches in the Decode stage

1 2 3 4 5 6 7 8 9 10
40 beq  x1,x0,16 F D E M W
44 and  x12,x2,x5 F
48 or   x13,x6,x2

52 add  x14,x2,x2

72 ld   x4,100(x7)
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Assume taken branch
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Branch Prediction

◼ Longer pipelines can’t readily determine branch outcome 

early

◼ Stall penalty becomes unacceptable

◼ Predict outcome of branch

◼ Only stall if prediction is wrong

◼ In RISC-V pipeline

◼ Can predict branches not taken

◼ Fetch instruction after branch, with no delay



Predict Not Taken

1 2 3 4 5 6 7 8 9 10

beq  x1,x0,L F D E M W

I2 F

L IT
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◼Solving branches in the Decode stage
◼Assume branch is not taken.



Predict Not Taken

1 2 3 4 5 6 7 8 9 10

beq  x1,x0,L F D E M W

I2 F

L IT
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◼Solving branches in the Decode stage
◼Assume branch is taken.
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More-Realistic Branch Prediction

◼ Static branch prediction

◼ Based on typical branch behavior

◼ Example: loop and if-statement branches

◼ Predict backward branches taken

◼ Predict forward branches not taken

◼ Dynamic branch prediction

◼ Hardware measures actual branch behavior

◼ e.g., record recent history of each branch

◼ Assume future behavior will continue the trend

◼ When wrong, stall while re-fetching, and update history
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Dynamic Branch Prediction

◼ In deeper and superscalar pipelines, branch penalty is more 

significant

◼ Use dynamic prediction

◼ Branch prediction buffer (aka branch history table)

◼ Indexed by recent branch instruction addresses

◼ Stores outcome (taken/not taken)

◼ To execute a branch

◼ Check table, expect the same outcome

◼ Start fetching from fall-through or target

◼ If wrong, flush pipeline and flip prediction



Branch History Table (BHT)

Chapter 4 — The Processor — 40

Table size = n × 2k bits

1-bit predictor
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1-Bit Predictor: Shortcoming

◼ Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

◼ Mispredict as taken on last iteration of inner loop

◼ Then mispredict as not taken on first iteration of 

inner loop next time around
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2-Bit Predictor

◼ Only change prediction on two successive mispredictions
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Calculating the Branch Target

◼ Even with predictor, still need to calculate the target 

address

◼ 1-cycle penalty for a taken branch

◼ Branch target buffer

◼ Cache of target addresses

◼ Indexed by PC when instruction fetched

◼ If hit and instruction is branch predicted taken, can fetch target 

immediately



Branch Target Buffer (BTB)
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Exceptions and Interrupts

◼ “Unexpected” events requiring change in flow of control

◼ Different ISAs use the terms differently

◼ Exception

◼ Arises within the CPU

◼ e.g., undefined opcode, syscall, …

◼ Interrupt

◼ From an external I/O controller

◼ Dealing with them without sacrificing performance is hard
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Handling Exceptions

◼ Save PC of offending (or interrupted) instruction
◼ In RISC-V: Supervisor Exception Program Counter (SEPC)

◼ Save indication of the problem
◼ In RISC-V: Supervisor Exception Cause Register (SCAUSE)

◼ 64 bits, but most bits unused
◼ Exception code field: 2 for undefined opcode, 12 for hardware malfunction, …

◼ Jump to handler
◼ Assume at 0000 0000 1C09 0000hex
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Handling Exceptions
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An Alternate Mechanism

◼ Vectored Interrupts

◼ Handler address determined by the cause

◼ Exception vector address to be added to a vector table 
base register:

◼ Undefined opcode 00 0100 0000two

◼ Hardware malfunction: 01 1000 0000two

◼ …: …

◼ Instructions either

◼ Deal with the interrupt, or

◼ Jump to real handler
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An Alternate Mechanism
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Handler Actions

◼ Read cause, and transfer to relevant handler

◼ Determine action required

◼ If restartable

◼ Take corrective action

◼ use SEPC to return to program

◼ Otherwise

◼ Terminate program

◼ Report error using SEPC, SCAUSE, …
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Exceptions in a Pipeline

◼ Another form of control hazard

◼ Consider malfunction on add in EX stage
add x1, x2, x1

◼ Prevent x1 from being clobbered

◼ Complete previous instructions

◼ Flush add and subsequent instructions

◼ Set SEPC and SCAUSE register values

◼ Transfer control to handler

◼ Similar to mispredicted branch

◼ Use much of the same hardware



Exceptions in a Pipeline
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1 2 3 4 5 6 7 8 9 10 11 12 13

I1 F D E M W

add  x1,x2,x1 F

I3

I4

I5

IHS
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Pipeline with Exceptions
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Exception Properties

◼ Restartable exceptions

◼ Pipeline can flush the instruction

◼ Handler executes, then returns to the instruction

◼ Refetched and executed from scratch

◼ PC saved in SEPC register

◼ Identifies causing instruction
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Exception Example

◼ Exception on add in
40 sub  x11, x2, x4
44 and  x12, x2, x5
48 or   x13, x2, x6
4c add  x1,  x2, x1
50 sub  x15, x6, x7
54 ld x16, 100(x7)
…

◼ Handler
1C090000 sd x26, 1000(x10)
1c090004   sd x27, 1008(x10)
…
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Exception Example
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Exception Example
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Multiple Exceptions

◼ Pipelining overlaps multiple instructions

◼ Could have multiple exceptions at once

◼ Simple approach: deal with exception from earliest instruction

◼ Flush subsequent instructions

◼ “Precise” exceptions

◼ In complex pipelines

◼ Multiple instructions issued per cycle

◼ Out-of-order completion

◼ Maintaining precise exceptions is difficult!



Multiple Exceptions
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1 2 3 4 5 6 7 8 9 10 11 12 13

I1 F D E M W

add  x1,x2,x1 F

I3 (bad)

I4

I5

IHS
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Imprecise Exceptions

◼ Just stop pipeline and save state

◼ Including exception cause(s)

◼ Let the handler work out

◼ Which instruction(s) had exceptions

◼ Which to complete or flush

◼ May require “manual” completion

◼ Simplifies hardware, but more complex handler software

◼ Not feasible for complex multiple-issue out-of-order pipelines
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Instruction-Level Parallelism (ILP)

◼ Pipelining: executing multiple instructions in parallel

◼ To increase ILP

◼ Deeper pipeline
◼ Less work per stage  shorter clock cycle

◼ Multiple issue
◼ Replicate pipeline stages  multiple pipelines

◼ Start multiple instructions per clock cycle

◼ CPI < 1, so use Instructions Per Cycle (IPC)

◼ E.g., 4GHz 4-way multiple-issue
◼ 16 BIPS, peak CPI = 0.25, peak IPC = 4

◼ But dependencies reduce this in practice
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Multiple Issue

◼ Static multiple issue

◼ Compiler groups instructions to be issued together

◼ Packages them into “issue slots”

◼ Compiler detects and avoids hazards

◼ Dynamic multiple issue

◼ CPU examines instruction stream and chooses instructions to issue each 

cycle

◼ Compiler can help by reordering instructions

◼ CPU resolves hazards using advanced techniques at runtime
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Static Multiple Issue

◼ Compiler groups instructions into “issue packets”

◼ Group of instructions that can be issued on a single cycle

◼ Determined by pipeline resources required

◼ Think of an issue packet as a very long instruction

◼ Specifies multiple concurrent operations

◼  Very Long Instruction Word (VLIW)



VILW
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Scheduling Static Multiple Issue

◼ Compiler must remove some/all hazards

◼ Reorder instructions into issue packets

◼ No dependencies with a packet

◼ Possibly some dependencies between packets

◼ Varies between ISAs; compiler must know!

◼ Pad with nop if necessary
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RISC-V with Static Dual Issue

◼ Two-issue packets

◼ One ALU/branch instruction

◼ One load/store instruction

◼ 64-bit aligned

◼ ALU/branch, then load/store

◼ Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB
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RISC-V with Static Dual Issue
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Hazards in the Dual-Issue RISC-V

◼ More instructions executing in parallel

◼ EX data hazard

◼ Forwarding avoided stalls with single-issue

◼ Now can’t use ALU result in load/store in same packet

◼ add  x10, x0, x1
ld x2, 0(x10)

◼ Split into two packets, effectively a stall

◼ Load-use hazard

◼ Still one cycle use latency, but now two instructions

◼ More aggressive scheduling required
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Hazards in the Dual-Issue RISC-V

1 2 3 4 5 6 7 8 9 10
add  x10, x0, x1 F D E M W
nop F D E M W
nop

ld x2, 0(x10)
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Hazards in the Dual-Issue RISC-V

◼ Load-use hazard

◼ ld x31, 0(x20)
add  x31, x31, x21

◼ Still one cycle use latency, but now two instructions

◼ More aggressive scheduling required
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Hazards in the Dual-Issue RISC-V

1 2 3 4 5 6 7 8 9 10
nop F D E M W
ld x31, 0(x20) F D E M W
nop

nop

add  x31,x31,21



Forwarding in Dual-Issue RISC-V

◼ In addition to forwarding from M and W to E, there are 

additional forwarding paths among the two pipelines, e.g.:

◼ From W in memory pipeline to E in ALU pipeline
◼ ld x31, 0(x20) 
add  x31, x31, x21

◼ Refer to the previous slide

◼ From W in ALU pipeline to M in memory pipeline
◼ add  x31, x31, x21 
sd x31, 0(x20)
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Forwarding in Dual-Issue RISC-V

Chapter 4 — The Processor — 77

From W in ALU pipeline to M in memory pipeline

1 2 3 4 5 6 7 8 9 10
add  x31, x31, x21 F D E M W
nop

nop

sd x31, 0(x20)
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Scheduling Example

◼ Schedule this for dual-issue RISC-V

Loop: ld x31,0(x20)     // x31=array element
add  x31,x31,x21    // add scalar in x21
sd x31,0(x20)     // store result
addi x20,x20,-8     // decrement pointer
blt x22,x20,Loop   // branch if x22 < x20

ALU/branch Load/store cycle

Loop: 1

2

3

4



Chapter 4 — The Processor — 79

Scheduling Example

◼ Schedule this for dual-issue RISC-V

Loop: ld x31,0(x20)     // x31=array element
add  x31,x31,x21    // add scalar in x21
sd x31,0(x20)     // store result
addi x20,x20,-8     // decrement pointer
blt x22,x20,Loop   // branch if x22 < x20

ALU/branch Load/store cycle

Loop: nop ld x31,0(x20) 1

addi x20,x20,-8 nop 2

add  x31,x31,x21 nop 3

blt x22,x20,Loop sd x31,8(x20) 4

◼ IPC = 5/4 = 1.25 (c.f. peak IPC = 2)
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Loop Unrolling

◼ Replicate loop body to expose more parallelism

◼ Reduces loop-control overhead

◼ Use different registers per replication

◼ Called “register renaming”

◼ Avoid loop-carried “anti-dependencies”

◼ Store followed by a load of the same register

◼ Aka “name dependence”, write-after-read

◼ Or “output dependence”, write-after-write 

◼ Reuse of a register name



Unrolling Steps

1. Replicate the loop instructions n times

2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions
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Example

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
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1. Replicate the loop instructions 4 times

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
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2. Remove unneeded loop overhead

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
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2. Remove unneeded loop overhead

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
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3. Modify instructions

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop
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3. Modify instructions

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,-8(x20)
add  x31,x31,x21
sd x31,-8(x20)

ld x31,-16(x20)
add  x31,x31,x21
sd x31,-16(x20)

ld x31,-24(x20)
add  x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop
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4. Rename registers

Loop:

ld x31,0(x20)
add  x31,x31,x21
sd x31,0(x20)

ld x31,-8(x20)
add  x31,x31,x21
sd x31,-8(x20)

ld x31,-16(x20)
add  x31,x31,x21
sd x31,-16(x20)

ld x31,-24(x20)
add  x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop
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4. Rename registers

Loop:

ld x28,0(x20)
add  x28,x28,x21
sd x28,0(x20)

ld x29,-8(x20)
add  x29,x29,x21
sd x29,-8(x20)

ld x30,-16(x20)
add  x30,x30,x21
sd x30,-16(x20)

ld x31,-24(x20)
add  x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop
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5. Schedule instructions

Loop:

ld x28,0(x20)
add  x28,x28,x21
sd x28,0(x20)
ld x29,-8(x20)
add  x29,x29,x21
sd x29,-8(x20)
ld x30,-16(x20)
add  x30,x30,x21
sd x30,-16(x20)
ld x31,-24(x20)
add  x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop
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ALU/branch Load/store cycle

Loop: 1

2

3

4

5

6

7

8



Chapter 4 — The Processor — 91

Loop Unrolling Example

◼ IPC = 14/8 = 1.75

◼ Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi x20,x20,-32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28,x28,x21 ld x30, 16(x20) 3

add x29,x29,x21 ld x31, 8(x20) 4

add x30,x30,x21 sd x28, 32(x20) 5

add x31,x31,x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22,x20,Loop sd x31, 8(x20) 8
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Dynamic Multiple Issue

◼ “Superscalar” processors

◼ CPU decides whether to issue 0, 1, 2, … each cycle

◼ Avoiding structural and data hazards

◼ Avoids the need for compiler scheduling

◼ Though it may still help

◼ Code semantics ensured by the CPU
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Dynamic Pipeline Scheduling

◼ Allow the CPU to execute instructions out of order to avoid 

stalls

◼ But commit result to registers in order

◼ Example

ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

◼ Can start sub while add is waiting for ld
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Dynamically Scheduled CPU

Results also sent 

to any waiting 

reservation stations

Reorders buffer for 

register writes
Can supply 

operands for 

issued instructions

Preserves 

dependencies

Hold pending 

operands



Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (IQ).

I: Issue from IQ to reservation stations (RS), reading ready operands 

from register file (RF).

E: Execute when functional unit (FU) is free and instr. in RS has ready 

operands.

W: Write result from FU through common data bus (CDB) to reorder 

buffer (ROB) and RS.

C: Commit results in order from ROB to RF and memory.

◼ Loads have FIAMWC, stores have FIAC. A: Address calculation
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Single-issue Example

1 2 3 4 5 6 7 8 9 10
ld   x31,20(x21)

add  x1,x31,x2

sub  x23,x23,x3

andi x5,x23,20
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Register Renaming

◼ Reservation stations and reorder buffer effectively provide 
register renaming

◼ On instruction issue to reservation station

◼ If operand is available in register file or reorder buffer
◼ Copied to reservation station

◼ No longer required in the register; can be overwritten

◼ If operand is not yet available
◼ It will be provided to the reservation station by a function unit

◼ Register update may not be required



Examples

◼ Assume superscalar processor of degree 3

◼ Name dependence (WAR)

mul x1,x2,x3
add x4,x1,x5
ld x5,16(x21)

◼ Output dependence (WAW)

mul x1,x2,x3
add x4,x1,x5
ld x1,16(x21)
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Triple Issue: Name dependence (WAR)

1 2 3 4 5 6 7 8 9 10
mul  x1,x2,x3

add  x4,x1,x5

ld   x5,16(x21)
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Assume multiplication latency is 3 cycles



Triple Issue: Output Dependence (WAW)

1 2 3 4 5 6 7 8 9 10
mul  x1,x2,x3

add  x4,x1,x5

ld   x1,16(x21)
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Assume multiplication latency is 3 cycles
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Speculation

◼ “Guess” what to do with an instruction

◼ Start operation as soon as possible

◼ Check whether guess was right

◼ If so, complete the operation

◼ If not, roll-back and do the right thing

◼ Common to static and dynamic multiple issue

◼ Examples

◼ Speculate on branch outcome

◼ Roll back if path taken is different

◼ Speculate on load

◼ Roll back if location is updated
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Compiler/Hardware Speculation

◼ Compiler can reorder instructions

◼ e.g., move load before branch

◼ Can include “fix-up” instructions to recover from incorrect guess

◼ Hardware can look ahead for instructions to execute

◼ Buffer results until it determines they are actually needed

◼ Flush buffers on incorrect speculation
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Branch Speculation

◼ Predict branch and continue issuing

◼ Don’t commit until branch outcome determined

◼ Example: Assume a superscalar processor of degree 2 

and the branch prediction is not taken.

ld x1,0(x20)
beq x1,x2,Skip
I3
I4



Example: Assume a superscalar processor of degree 2 and 

the branch prediction is not taken. (Correct prediction)

◼

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20) F I

beq x1,x2,Skip  F I

I3                 F I 

I4                 F I 

…

Skip:
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Example: Assume a superscalar processor of degree 2 and 

the branch prediction is not taken. (Incorrect prediction)

◼

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20) F I

beq x1,x2,Skip  F I

I3                 F I 

I4                 F I 

…

Skip:
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Load Speculation

◼ Avoid load and cache miss delay

◼ Load before completing outstanding stores

◼ Predict the effective address or loaded value

◼ Bypass stored values to load unit

◼ Don’t commit load until speculation cleared

◼ Example: Superscalar of degree 3.

ld x1,0(x20)
sd x2,0(x1)
ld x3,0(x21)



Example: Load speculation. Assume a superscalar processor of degree 3. 

Predict the second load does not depend on the store. (Correct prediction)

1 2 3 4 5 6 7 8 9 0
ld x1,0(x20) F I 
sd x2,0(x1) F I       
ld x3,0(x21) F I 
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Example: Load speculation. Assume a superscalar processor of degree 3. 

Predict the second load does not depend on the store. (Incorrect prediction)

1 2 3 4 5 6 7 8 9 0
ld x1,0(x20) F I 
sd x2,0(x1) F I       
ld x3,0(x21) F I 
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Speculation and Exceptions

◼ What if exception occurs on a speculatively executed 
instruction?

◼ e.g., speculative load before null-pointer check

◼ Static speculation

◼ Can add ISA support for deferring exceptions

◼ Dynamic speculation

◼ Can buffer exceptions until instruction completion (which may 
not occur)



Exceptions Examples

◼ Assume superscalar processor of degree 3 with 2 address 

calculation units

◼ E1: Predict branch as not take, but resolve to taken. The 

ld has exception in M.

1 2 3 4 5 6 7 8 9 0

beq x1,x2,L1     F I
ld x5,16(x21)   F I
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Exceptions Examples

◼ Assume superscalar processor of degree 3 with 2 address 

calculation units

◼ E2: Assume the first sd has exception in C.

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20)    F I

sd x1,0(x21)    F I

sd x2,16(x21)   F I
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Why Do Dynamic Scheduling?

◼ Why not just let the compiler schedule code?

◼ Not all stalls are predicable

◼ e.g., cache misses

◼ Can’t always schedule around branches

◼ Branch outcome is dynamically determined

◼ Different implementations of an ISA have different 

latencies and hazards
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Does Multiple Issue Work?

◼ Yes, but not as much as we’d like

◼ Programs have real dependencies that limit ILP

◼ Some dependencies are hard to eliminate

◼ e.g., pointer aliasing

◼ Some parallelism is hard to expose

◼ Limited window size during instruction issue

◼ Memory delays and limited bandwidth

◼ Hard to keep pipelines full

◼ Speculation can help if done well

The BIG Picture
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Power Efficiency

◼ Complexity of dynamic scheduling and speculations 

requires power

◼ Multiple simpler cores may be better
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Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 6700

Market Personal Mobile Device Server, cloud

Thermal design power 100 milliWatts (1 core @ 1 GHz) 130 Watts

Clock rate 1.5 GHz 3.4 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order with speculation

Branch prediction Hybrid Multi-level

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 8 MB
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ARM Cortex-A53 Pipeline
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ARM Cortex-A53 Performance
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Core i7 Pipeline
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Core i7 Performance
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Core i7 Performance
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Core i7 Performance
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Fallacies

◼ Pipelining is easy (!)

◼ The basic idea is easy

◼ The devil is in the details

◼ e.g., detecting data hazards

◼ Pipelining is independent of technology

◼ So why haven’t we always done pipelining?

◼ More transistors make more advanced techniques feasible

◼ Pipeline-related ISA design needs to take account of technology 

trends

◼ e.g., predicated instructions



Chapter 4 — The Processor — 125

Pitfalls

◼ Poor ISA design can make pipelining harder

◼ e.g., complex instruction sets (VAX, IA-32)

◼ Significant overhead to make pipelining work

◼ IA-32 micro-op approach

◼ e.g., complex addressing modes

◼ Register update side effects, memory indirection

◼ e.g., delayed branches

◼ Advanced pipelines have long delay slots
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Concluding Remarks

◼ Pipelining improves instruction throughput using 

parallelism

◼ More instructions completed per second

◼ Latency for each instruction not reduced

◼ Hazards: structural, data, control

◼ Multiple issue and dynamic scheduling (ILP)

◼ Dependencies limit achievable parallelism

◼ Complexity leads to the power wall


