
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 2

Contents

4.7 Pipelined Datapath and Control (Review)

Five-Stage Pipeline

Pipeline Control

Pipeline Hazards

Chapter 4 — The Processor — 3

Five-Stage Pipeline

F: Fetch instruction from the instruction memory

D: Decode instruction and read operands

E: Execute operation or calculate address

M: Memory access

W: Write result to the register

Chapter 4 — The Processor — 4

Chapter 4 — The Processor — 5

Five-Stage Pipeline

Chapter 4 — The Processor — 6

Pipelined Control

◼ Control signals derived from instruction

◼ As in single-cycle implementation

Chapter 4 — The Processor — 7

Pipelined Control

Chapter 4 — The Processor — 8

Hazards

◼ Situations that prevent starting the next instruction in the
next cycle

◼ Structure hazards

◼ A required resource is busy

◼ Data hazard

◼ Need to wait for previous instruction to complete its data
read/write

◼ Control hazard

◼ Deciding on control action depends on previous instruction

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 9

Contents

4.8 Data Hazards: Forwarding versus Stalling

Data Hazards in ALU Instructions

Load-Use Data Hazard

Code Scheduling

Chapter 4 — The Processor — 10

Chapter 4 — The Processor — 11

Data Hazards in ALU Instructions

◼ Consider this sequence:

sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)

◼ There are multiple true data dependencies, read-after-

write (RAW), on register x2.

◼ We can resolve hazards with stalls or forwarding.

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Assume no forwarding (except through the Register File) and

hazards are solved by stalls

1 2 3 4 5 6 7 8 9 10
sub x2, x1,x3 F D E M W
and x12,x2,x5 F
or x13,x6,x2

add x14,x2,x2

sd x15,100(x2)

Chapter 4 — The Processor — 12

Chapter 4 — The Processor — 13

Dependencies & Forwarding

Chapter 4 — The Processor — 14

Forwarding Paths

With Forwarding

1 2 3 4 5 6 7 8 9 10
sub x2, x1,x3 F D E M W
and x12,x2,x5 F
or x13,x6,x2

add x14,x2,x2

sd x15,100(x2)

Chapter 4 — The Processor — 15

Chapter 4 — The Processor — 16

Load-Use Data Hazard

◼ Can’t always avoid stalls by forwarding

◼ If value not computed when needed

◼ Can’t forward backward in time!

Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
sub x4,x1,x5 F D

Chapter 4 — The Processor — 17

Chapter 4 — The Processor — 18

Load-Use Hazard Detection

◼ Check when using instruction is decoded in ID stage

◼ ALU operand register numbers in ID stage are given by

◼ IF/ID.RegisterRs1, IF/ID.RegisterRs2

◼ Load-use hazard when

◼ ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs2))

◼ If detected, stall and insert bubble

Stall Circuit

Chapter 4 — The Processor — 19

Chapter 4 — The Processor — 20

How to Stall the Pipeline

◼ Force control values in ID/EX register to 0

◼ EX, MEM and WB do nop (no-operation)

◼ Prevent update of PC and IF/ID register

◼ Using instruction is decoded again

◼ Following instruction is fetched again

◼ 1-cycle stall allows MEM to read data for ld

◼ Can subsequently forward to EX stage

Chapter 4 — The Processor — 21

Load-Use Data Hazard

Stall inserted

here

Chapter 4 — The Processor — 22

Datapath with Hazard Detection

Chapter 4 — The Processor — 23

Stalls and Performance

◼ Stalls reduce performance

◼ But are required to get correct results

◼ Compiler can arrange code to avoid hazards and stalls

◼ Requires knowledge of the pipeline structure

The BIG Picture

Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
sub x4,x1,x5 F D D E M W
add x7,x5,x6 F F D E M W

Chapter 4 — The Processor — 24

Rearranging to solve Load-Use Data Hazard

1 2 3 4 5 6 7 8 9 10
ld x1, 0(x2) F D E M W
add x7,x5,x6 F D
sub x4,x1,x5

Chapter 4 — The Processor — 25

Chapter 4 — The Processor — 26

Code Scheduling to Avoid Stalls

◼ Reorder code to avoid use of load result in the next

instruction

◼ C code for a = b + e; c = b + f;

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 27

Contents

4.9 Control Hazards

Branch Hazards

Reducing Branch Delay

Branch Prediction

Dynamic Branch Prediction

Calculating Branch Target

Chapter 4 — The Processor — 28

Chapter 4 — The Processor — 29

Branch Hazards

◼ If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)

Solving branches in the Memory stage

1 2 3 4 5 6 7 8 9 10
40 beq x1,x0,16 F D E M W
44 and x12,x2,x5 F
48 or x13,x6,x2

52 add x14,x2,x2

72 ld x4,100(x7)

Chapter 4 — The Processor — 30

Assume taken branch

Chapter 4 — The Processor — 31

Reducing Branch Delay

◼ Move hardware to determine outcome to ID stage

◼ Target address adder

◼ Register comparator

◼ Example: branch taken
36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch

// to 40+16*2=72
44: and x12, x2, x5
48: or x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7

...
72: ld x4, 50(x7)

Chapter 4 — The Processor — 32

Example: Branch Taken

Chapter 4 — The Processor — 33

Example: Branch Taken

Solving branches in the Decode stage

1 2 3 4 5 6 7 8 9 10
40 beq x1,x0,16 F D E M W
44 and x12,x2,x5 F
48 or x13,x6,x2

52 add x14,x2,x2

72 ld x4,100(x7)

Chapter 4 — The Processor — 34

Assume taken branch

Chapter 4 — The Processor — 35

Branch Prediction

◼ Longer pipelines can’t readily determine branch outcome

early

◼ Stall penalty becomes unacceptable

◼ Predict outcome of branch

◼ Only stall if prediction is wrong

◼ In RISC-V pipeline

◼ Can predict branches not taken

◼ Fetch instruction after branch, with no delay

Predict Not Taken

1 2 3 4 5 6 7 8 9 10

beq x1,x0,L F D E M W

I2 F

L IT

Chapter 4 — The Processor — 36

◼Solving branches in the Decode stage
◼Assume branch is not taken.

Predict Not Taken

1 2 3 4 5 6 7 8 9 10

beq x1,x0,L F D E M W

I2 F

L IT

Chapter 4 — The Processor — 37

◼Solving branches in the Decode stage
◼Assume branch is taken.

Chapter 4 — The Processor — 38

More-Realistic Branch Prediction

◼ Static branch prediction

◼ Based on typical branch behavior

◼ Example: loop and if-statement branches

◼ Predict backward branches taken

◼ Predict forward branches not taken

◼ Dynamic branch prediction

◼ Hardware measures actual branch behavior

◼ e.g., record recent history of each branch

◼ Assume future behavior will continue the trend

◼ When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 39

Dynamic Branch Prediction

◼ In deeper and superscalar pipelines, branch penalty is more

significant

◼ Use dynamic prediction

◼ Branch prediction buffer (aka branch history table)

◼ Indexed by recent branch instruction addresses

◼ Stores outcome (taken/not taken)

◼ To execute a branch

◼ Check table, expect the same outcome

◼ Start fetching from fall-through or target

◼ If wrong, flush pipeline and flip prediction

Branch History Table (BHT)

Chapter 4 — The Processor — 40

Table size = n × 2k bits

1-bit predictor

Chapter 4 — The Processor — 41

1-Bit Predictor: Shortcoming

◼ Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

◼ Mispredict as taken on last iteration of inner loop

◼ Then mispredict as not taken on first iteration of

inner loop next time around

Chapter 4 — The Processor — 42

2-Bit Predictor

◼ Only change prediction on two successive mispredictions

Chapter 4 — The Processor — 43

Calculating the Branch Target

◼ Even with predictor, still need to calculate the target

address

◼ 1-cycle penalty for a taken branch

◼ Branch target buffer

◼ Cache of target addresses

◼ Indexed by PC when instruction fetched

◼ If hit and instruction is branch predicted taken, can fetch target

immediately

Branch Target Buffer (BTB)

Chapter 4 — The Processor — 44

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 45

Contents

4.10 Exceptions

Exceptions and Interrupts

Handling Exceptions

Exceptions in a Pipeline

Exception Example

Multiple Exceptions

Imprecise Exceptions

Chapter 4 — The Processor — 46

Chapter 4 — The Processor — 47

Exceptions and Interrupts

◼ “Unexpected” events requiring change in flow of control

◼ Different ISAs use the terms differently

◼ Exception

◼ Arises within the CPU

◼ e.g., undefined opcode, syscall, …

◼ Interrupt

◼ From an external I/O controller

◼ Dealing with them without sacrificing performance is hard

Chapter 4 — The Processor — 48

Handling Exceptions

◼ Save PC of offending (or interrupted) instruction
◼ In RISC-V: Supervisor Exception Program Counter (SEPC)

◼ Save indication of the problem
◼ In RISC-V: Supervisor Exception Cause Register (SCAUSE)

◼ 64 bits, but most bits unused
◼ Exception code field: 2 for undefined opcode, 12 for hardware malfunction, …

◼ Jump to handler
◼ Assume at 0000 0000 1C09 0000hex

Chapter 4 — The Processor — 49

Handling Exceptions

Chapter 4 — The Processor — 50

An Alternate Mechanism

◼ Vectored Interrupts

◼ Handler address determined by the cause

◼ Exception vector address to be added to a vector table
base register:

◼ Undefined opcode 00 0100 0000two

◼ Hardware malfunction: 01 1000 0000two

◼ …: …

◼ Instructions either

◼ Deal with the interrupt, or

◼ Jump to real handler

Chapter 4 — The Processor — 51

An Alternate Mechanism

Chapter 4 — The Processor — 52

Handler Actions

◼ Read cause, and transfer to relevant handler

◼ Determine action required

◼ If restartable

◼ Take corrective action

◼ use SEPC to return to program

◼ Otherwise

◼ Terminate program

◼ Report error using SEPC, SCAUSE, …

Chapter 4 — The Processor — 53

Exceptions in a Pipeline

◼ Another form of control hazard

◼ Consider malfunction on add in EX stage
add x1, x2, x1

◼ Prevent x1 from being clobbered

◼ Complete previous instructions

◼ Flush add and subsequent instructions

◼ Set SEPC and SCAUSE register values

◼ Transfer control to handler

◼ Similar to mispredicted branch

◼ Use much of the same hardware

Exceptions in a Pipeline

Chapter 4 — The Processor — 54

1 2 3 4 5 6 7 8 9 10 11 12 13

I1 F D E M W

add x1,x2,x1 F

I3

I4

I5

IHS

Chapter 4 — The Processor — 55

Pipeline with Exceptions

Chapter 4 — The Processor — 56

Exception Properties

◼ Restartable exceptions

◼ Pipeline can flush the instruction

◼ Handler executes, then returns to the instruction

◼ Refetched and executed from scratch

◼ PC saved in SEPC register

◼ Identifies causing instruction

Chapter 4 — The Processor — 57

Exception Example

◼ Exception on add in
40 sub x11, x2, x4
44 and x12, x2, x5
48 or x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

◼ Handler
1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

Chapter 4 — The Processor — 58

Exception Example

Chapter 4 — The Processor — 59

Exception Example

Chapter 4 — The Processor — 60

Multiple Exceptions

◼ Pipelining overlaps multiple instructions

◼ Could have multiple exceptions at once

◼ Simple approach: deal with exception from earliest instruction

◼ Flush subsequent instructions

◼ “Precise” exceptions

◼ In complex pipelines

◼ Multiple instructions issued per cycle

◼ Out-of-order completion

◼ Maintaining precise exceptions is difficult!

Multiple Exceptions

Chapter 4 — The Processor — 61

1 2 3 4 5 6 7 8 9 10 11 12 13

I1 F D E M W

add x1,x2,x1 F

I3 (bad)

I4

I5

IHS

Chapter 4 — The Processor — 62

Imprecise Exceptions

◼ Just stop pipeline and save state

◼ Including exception cause(s)

◼ Let the handler work out

◼ Which instruction(s) had exceptions

◼ Which to complete or flush

◼ May require “manual” completion

◼ Simplifies hardware, but more complex handler software

◼ Not feasible for complex multiple-issue out-of-order pipelines

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 63

Contents

4.11 Parallelism via Instructions

Instruction-Level Parallelism (ILP)

Multiple Issue

Static Multiple Issue

VLIW

Scheduling Static Multiple Issue

Loop Unrolling

Dynamic Multiple Issue

Register Renaming

Speculation

Why Do Dynamic Scheduling

Chapter 4 — The Processor — 64

Chapter 4 — The Processor — 65

Instruction-Level Parallelism (ILP)

◼ Pipelining: executing multiple instructions in parallel

◼ To increase ILP

◼ Deeper pipeline
◼ Less work per stage  shorter clock cycle

◼ Multiple issue
◼ Replicate pipeline stages  multiple pipelines

◼ Start multiple instructions per clock cycle

◼ CPI < 1, so use Instructions Per Cycle (IPC)

◼ E.g., 4GHz 4-way multiple-issue
◼ 16 BIPS, peak CPI = 0.25, peak IPC = 4

◼ But dependencies reduce this in practice

Chapter 4 — The Processor — 66

Multiple Issue

◼ Static multiple issue

◼ Compiler groups instructions to be issued together

◼ Packages them into “issue slots”

◼ Compiler detects and avoids hazards

◼ Dynamic multiple issue

◼ CPU examines instruction stream and chooses instructions to issue each

cycle

◼ Compiler can help by reordering instructions

◼ CPU resolves hazards using advanced techniques at runtime

Chapter 4 — The Processor — 67

Static Multiple Issue

◼ Compiler groups instructions into “issue packets”

◼ Group of instructions that can be issued on a single cycle

◼ Determined by pipeline resources required

◼ Think of an issue packet as a very long instruction

◼ Specifies multiple concurrent operations

◼  Very Long Instruction Word (VLIW)

VILW

Chapter 4 — The Processor — 68

Chapter 4 — The Processor — 69

Scheduling Static Multiple Issue

◼ Compiler must remove some/all hazards

◼ Reorder instructions into issue packets

◼ No dependencies with a packet

◼ Possibly some dependencies between packets

◼ Varies between ISAs; compiler must know!

◼ Pad with nop if necessary

Chapter 4 — The Processor — 70

RISC-V with Static Dual Issue

◼ Two-issue packets

◼ One ALU/branch instruction

◼ One load/store instruction

◼ 64-bit aligned

◼ ALU/branch, then load/store

◼ Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 71

RISC-V with Static Dual Issue

Chapter 4 — The Processor — 72

Hazards in the Dual-Issue RISC-V

◼ More instructions executing in parallel

◼ EX data hazard

◼ Forwarding avoided stalls with single-issue

◼ Now can’t use ALU result in load/store in same packet

◼ add x10, x0, x1
ld x2, 0(x10)

◼ Split into two packets, effectively a stall

◼ Load-use hazard

◼ Still one cycle use latency, but now two instructions

◼ More aggressive scheduling required

Chapter 4 — The Processor — 73

Hazards in the Dual-Issue RISC-V

1 2 3 4 5 6 7 8 9 10
add x10, x0, x1 F D E M W
nop F D E M W
nop

ld x2, 0(x10)

Chapter 4 — The Processor — 74

Hazards in the Dual-Issue RISC-V

◼ Load-use hazard

◼ ld x31, 0(x20)
add x31, x31, x21

◼ Still one cycle use latency, but now two instructions

◼ More aggressive scheduling required

Chapter 4 — The Processor — 75

Hazards in the Dual-Issue RISC-V

1 2 3 4 5 6 7 8 9 10
nop F D E M W
ld x31, 0(x20) F D E M W
nop

nop

add x31,x31,21

Forwarding in Dual-Issue RISC-V

◼ In addition to forwarding from M and W to E, there are

additional forwarding paths among the two pipelines, e.g.:

◼ From W in memory pipeline to E in ALU pipeline
◼ ld x31, 0(x20)
add x31, x31, x21

◼ Refer to the previous slide

◼ From W in ALU pipeline to M in memory pipeline
◼ add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 76

Forwarding in Dual-Issue RISC-V

Chapter 4 — The Processor — 77

From W in ALU pipeline to M in memory pipeline

1 2 3 4 5 6 7 8 9 10
add x31, x31, x21 F D E M W
nop

nop

sd x31, 0(x20)

Chapter 4 — The Processor — 78

Scheduling Example

◼ Schedule this for dual-issue RISC-V

Loop: ld x31,0(x20) // x31=array element
add x31,x31,x21 // add scalar in x21
sd x31,0(x20) // store result
addi x20,x20,-8 // decrement pointer
blt x22,x20,Loop // branch if x22 < x20

ALU/branch Load/store cycle

Loop: 1

2

3

4

Chapter 4 — The Processor — 79

Scheduling Example

◼ Schedule this for dual-issue RISC-V

Loop: ld x31,0(x20) // x31=array element
add x31,x31,x21 // add scalar in x21
sd x31,0(x20) // store result
addi x20,x20,-8 // decrement pointer
blt x22,x20,Loop // branch if x22 < x20

ALU/branch Load/store cycle

Loop: nop ld x31,0(x20) 1

addi x20,x20,-8 nop 2

add x31,x31,x21 nop 3

blt x22,x20,Loop sd x31,8(x20) 4

◼ IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 80

Loop Unrolling

◼ Replicate loop body to expose more parallelism

◼ Reduces loop-control overhead

◼ Use different registers per replication

◼ Called “register renaming”

◼ Avoid loop-carried “anti-dependencies”

◼ Store followed by a load of the same register

◼ Aka “name dependence”, write-after-read

◼ Or “output dependence”, write-after-write

◼ Reuse of a register name

Unrolling Steps

1. Replicate the loop instructions n times

2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions

Chapter 4 — The Processor — 81

Example

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

Chapter 4 — The Processor — 82

1. Replicate the loop instructions 4 times

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

Chapter 4 — The Processor — 83

2. Remove unneeded loop overhead

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

Chapter 4 — The Processor — 84

2. Remove unneeded loop overhead

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

Chapter 4 — The Processor — 85

3. Modify instructions

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loop

Chapter 4 — The Processor — 86

3. Modify instructions

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,-8(x20)
add x31,x31,x21
sd x31,-8(x20)

ld x31,-16(x20)
add x31,x31,x21
sd x31,-16(x20)

ld x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

Chapter 4 — The Processor — 87

4. Rename registers

Loop:

ld x31,0(x20)
add x31,x31,x21
sd x31,0(x20)

ld x31,-8(x20)
add x31,x31,x21
sd x31,-8(x20)

ld x31,-16(x20)
add x31,x31,x21
sd x31,-16(x20)

ld x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

Chapter 4 — The Processor — 88

4. Rename registers

Loop:

ld x28,0(x20)
add x28,x28,x21
sd x28,0(x20)

ld x29,-8(x20)
add x29,x29,x21
sd x29,-8(x20)

ld x30,-16(x20)
add x30,x30,x21
sd x30,-16(x20)

ld x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

Chapter 4 — The Processor — 89

5. Schedule instructions

Loop:

ld x28,0(x20)
add x28,x28,x21
sd x28,0(x20)
ld x29,-8(x20)
add x29,x29,x21
sd x29,-8(x20)
ld x30,-16(x20)
add x30,x30,x21
sd x30,-16(x20)
ld x31,-24(x20)
add x31,x31,x21
sd x31,-24(x20)
addi x20,x20,-32
blt x22,x20,Loop

Chapter 4 — The Processor — 90

ALU/branch Load/store cycle

Loop: 1

2

3

4

5

6

7

8

Chapter 4 — The Processor — 91

Loop Unrolling Example

◼ IPC = 14/8 = 1.75

◼ Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi x20,x20,-32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28,x28,x21 ld x30, 16(x20) 3

add x29,x29,x21 ld x31, 8(x20) 4

add x30,x30,x21 sd x28, 32(x20) 5

add x31,x31,x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22,x20,Loop sd x31, 8(x20) 8

Chapter 4 — The Processor — 92

Dynamic Multiple Issue

◼ “Superscalar” processors

◼ CPU decides whether to issue 0, 1, 2, … each cycle

◼ Avoiding structural and data hazards

◼ Avoids the need for compiler scheduling

◼ Though it may still help

◼ Code semantics ensured by the CPU

Chapter 4 — The Processor — 93

Dynamic Pipeline Scheduling

◼ Allow the CPU to execute instructions out of order to avoid

stalls

◼ But commit result to registers in order

◼ Example

ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

◼ Can start sub while add is waiting for ld

Chapter 4 — The Processor — 94

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (IQ).

I: Issue from IQ to reservation stations (RS), reading ready operands

from register file (RF).

E: Execute when functional unit (FU) is free and instr. in RS has ready

operands.

W: Write result from FU through common data bus (CDB) to reorder

buffer (ROB) and RS.

C: Commit results in order from ROB to RF and memory.

◼ Loads have FIAMWC, stores have FIAC. A: Address calculation

Chapter 4 — The Processor — 95

Single-issue Example

1 2 3 4 5 6 7 8 9 10
ld x31,20(x21)

add x1,x31,x2

sub x23,x23,x3

andi x5,x23,20

Chapter 4 — The Processor — 96

Chapter 4 — The Processor — 97

Register Renaming

◼ Reservation stations and reorder buffer effectively provide
register renaming

◼ On instruction issue to reservation station

◼ If operand is available in register file or reorder buffer
◼ Copied to reservation station

◼ No longer required in the register; can be overwritten

◼ If operand is not yet available
◼ It will be provided to the reservation station by a function unit

◼ Register update may not be required

Examples

◼ Assume superscalar processor of degree 3

◼ Name dependence (WAR)

mul x1,x2,x3
add x4,x1,x5
ld x5,16(x21)

◼ Output dependence (WAW)

mul x1,x2,x3
add x4,x1,x5
ld x1,16(x21)

Chapter 4 — The Processor — 98

Triple Issue: Name dependence (WAR)

1 2 3 4 5 6 7 8 9 10
mul x1,x2,x3

add x4,x1,x5

ld x5,16(x21)

Chapter 4 — The Processor — 99

Assume multiplication latency is 3 cycles

Triple Issue: Output Dependence (WAW)

1 2 3 4 5 6 7 8 9 10
mul x1,x2,x3

add x4,x1,x5

ld x1,16(x21)

Chapter 4 — The Processor — 100

Assume multiplication latency is 3 cycles

Chapter 4 — The Processor — 101

Speculation

◼ “Guess” what to do with an instruction

◼ Start operation as soon as possible

◼ Check whether guess was right

◼ If so, complete the operation

◼ If not, roll-back and do the right thing

◼ Common to static and dynamic multiple issue

◼ Examples

◼ Speculate on branch outcome

◼ Roll back if path taken is different

◼ Speculate on load

◼ Roll back if location is updated

Chapter 4 — The Processor — 102

Compiler/Hardware Speculation

◼ Compiler can reorder instructions

◼ e.g., move load before branch

◼ Can include “fix-up” instructions to recover from incorrect guess

◼ Hardware can look ahead for instructions to execute

◼ Buffer results until it determines they are actually needed

◼ Flush buffers on incorrect speculation

Chapter 4 — The Processor — 103

Branch Speculation

◼ Predict branch and continue issuing

◼ Don’t commit until branch outcome determined

◼ Example: Assume a superscalar processor of degree 2

and the branch prediction is not taken.

ld x1,0(x20)
beq x1,x2,Skip
I3
I4

Example: Assume a superscalar processor of degree 2 and

the branch prediction is not taken. (Correct prediction)

◼

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20) F I

beq x1,x2,Skip F I

I3 F I

I4 F I

…

Skip:

Chapter 4 — The Processor — 104

Example: Assume a superscalar processor of degree 2 and

the branch prediction is not taken. (Incorrect prediction)

◼

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20) F I

beq x1,x2,Skip F I

I3 F I

I4 F I

…

Skip:

Chapter 4 — The Processor — 105

Chapter 4 — The Processor — 106

Load Speculation

◼ Avoid load and cache miss delay

◼ Load before completing outstanding stores

◼ Predict the effective address or loaded value

◼ Bypass stored values to load unit

◼ Don’t commit load until speculation cleared

◼ Example: Superscalar of degree 3.

ld x1,0(x20)
sd x2,0(x1)
ld x3,0(x21)

Example: Load speculation. Assume a superscalar processor of degree 3.

Predict the second load does not depend on the store. (Correct prediction)

1 2 3 4 5 6 7 8 9 0
ld x1,0(x20) F I
sd x2,0(x1) F I
ld x3,0(x21) F I

Chapter 4 — The Processor — 107

Example: Load speculation. Assume a superscalar processor of degree 3.

Predict the second load does not depend on the store. (Incorrect prediction)

1 2 3 4 5 6 7 8 9 0
ld x1,0(x20) F I
sd x2,0(x1) F I
ld x3,0(x21) F I

Chapter 4 — The Processor — 108

Chapter 4 — The Processor — 109

Speculation and Exceptions

◼ What if exception occurs on a speculatively executed
instruction?

◼ e.g., speculative load before null-pointer check

◼ Static speculation

◼ Can add ISA support for deferring exceptions

◼ Dynamic speculation

◼ Can buffer exceptions until instruction completion (which may
not occur)

Exceptions Examples

◼ Assume superscalar processor of degree 3 with 2 address

calculation units

◼ E1: Predict branch as not take, but resolve to taken. The

ld has exception in M.

1 2 3 4 5 6 7 8 9 0

beq x1,x2,L1 F I
ld x5,16(x21) F I

Chapter 4 — The Processor — 110

Exceptions Examples

◼ Assume superscalar processor of degree 3 with 2 address

calculation units

◼ E2: Assume the first sd has exception in C.

1 2 3 4 5 6 7 8 9 0

ld x1,0(x20) F I

sd x1,0(x21) F I

sd x2,16(x21) F I

Chapter 4 — The Processor — 111

Chapter 4 — The Processor — 112

Why Do Dynamic Scheduling?

◼ Why not just let the compiler schedule code?

◼ Not all stalls are predicable

◼ e.g., cache misses

◼ Can’t always schedule around branches

◼ Branch outcome is dynamically determined

◼ Different implementations of an ISA have different

latencies and hazards

Chapter 4 — The Processor — 113

Does Multiple Issue Work?

◼ Yes, but not as much as we’d like

◼ Programs have real dependencies that limit ILP

◼ Some dependencies are hard to eliminate

◼ e.g., pointer aliasing

◼ Some parallelism is hard to expose

◼ Limited window size during instruction issue

◼ Memory delays and limited bandwidth

◼ Hard to keep pipelines full

◼ Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 114

Power Efficiency

◼ Complexity of dynamic scheduling and speculations

requires power

◼ Multiple simpler cores may be better

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 115

Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 6700

Market Personal Mobile Device Server, cloud

Thermal design power 100 milliWatts (1 core @ 1 GHz) 130 Watts

Clock rate 1.5 GHz 3.4 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order with speculation

Branch prediction Hybrid Multi-level

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 8 MB

Chapter 4 — The Processor — 116

ARM Cortex-A53 Pipeline

Chapter 4 — The Processor — 117

ARM Cortex-A53 Performance

Chapter 4 — The Processor — 118

Core i7 Pipeline

Chapter 4 — The Processor — 119

Core i7 Performance

Chapter 4 — The Processor — 120

Core i7 Performance

Chapter 4 — The Processor — 121

Core i7 Performance

Chapter 4 — The Processor — 122

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 123

Chapter 4 — The Processor — 124

Fallacies

◼ Pipelining is easy (!)

◼ The basic idea is easy

◼ The devil is in the details

◼ e.g., detecting data hazards

◼ Pipelining is independent of technology

◼ So why haven’t we always done pipelining?

◼ More transistors make more advanced techniques feasible

◼ Pipeline-related ISA design needs to take account of technology

trends

◼ e.g., predicated instructions

Chapter 4 — The Processor — 125

Pitfalls

◼ Poor ISA design can make pipelining harder

◼ e.g., complex instruction sets (VAX, IA-32)

◼ Significant overhead to make pipelining work

◼ IA-32 micro-op approach

◼ e.g., complex addressing modes

◼ Register update side effects, memory indirection

◼ e.g., delayed branches

◼ Advanced pipelines have long delay slots

Contents

4.7 Pipelined Datapath and Control (Review)

4.8 Data Hazards: Forwarding versus Stalling

4.9 Control Hazards

4.10 Exceptions

4.11 Parallelism via Instructions

4.12 Putting it All Together: The Intel Core i7 6700 and ARM

Cortex-A53

4.15 Fallacies and Pitfalls

4.16 Concluding Remarks

Chapter 4 — The Processor — 126

Chapter 4 — The Processor — 127

Concluding Remarks

◼ Pipelining improves instruction throughput using

parallelism

◼ More instructions completed per second

◼ Latency for each instruction not reduced

◼ Hazards: structural, data, control

◼ Multiple issue and dynamic scheduling (ILP)

◼ Dependencies limit achievable parallelism

◼ Complexity leads to the power wall

