
Big Data Patterns

Prof. Gheith Abandah

1

Reference

• Chapter 3: Big Data Patterns

• Arshdeep Bahga and Vijay Madisetti, Big Data Science and
Analytics: A Hands-On Approach, 2019.
• Web site: http://www.hands-on-books-series.com/

2

http://www.hands-on-books-series.com/

Outline

• Analytics Architectural Components &
Styles
• Load Leveling with Queues
• Load Balancing with Multiple Consumers
• Leader Election
• Sharding
• Consistency, Availability & Partition

Tolerance (CAP)
• Bloom Filter
• Materialized Views
• Lambda Architecture
• Scheduler-Agent-Supervisor
• Pipes & Filters
• Web Service
• Consensus in Distributed Systems

• MapReduce Patterns
• Numerical Summarization
• Top-N
• Filter
• Distinct
• Binning
• Inverted Index
• Sorting
• Joins

3

Load Leveling with Queues

• Queues allow decoupling of the producers and consumers.

4

Load Balancing with Multiple Consumers

• Multiple consumers improve performance and reliability.

• Read, hide, delete (or unhide, read, …) pattern

5

Leader Election

• Coordination in big data system is done by the leader node.

• Leader election is a mechanism by which the instances in a
distributed system can elect one of the instances as their leader.

• Options
• Elect the instance of the largest ID

• Bully algorithm:
• Each instance know the IDs of the others

• When an instance detects leader failure, it sends election message to instances of higher
IDs.

• If no response is received, it declares itself as the leader.

• Otherwise, it receives election message from an instance of higher ID.

6

Sharding

• Horizontally partitioning the data across multiple storage nodes in a
data storage system.

• Allows storing huge data, improves throughput, and improves
reliability (data shards replicated in multiple nodes).

• Scaling up can be by adding additional nodes.

• Sharding that can either be managed by the application or the data
storage system.

• Use one or more fields in the data as the shard key (or partition key).
• Use a hash function to evenly partition the data across the storage nodes.
• Sore data within a range of shard keys in one shard.

7

Sharding

8

Consistency, Availability & Partition
Tolerance (CAP)
• CAP Theorem: under partitioning, a distributed data system can

either be consistent or available but not both at the same time.

• In a consistent system, all reads are guaranteed to incorporate the
previous writes.

• Availability refers to the ability of the system to respond to all the
queries without being unavailable.

• Partition tolerance is the ability of the system to continue performing
in the event of network partitions (two (or more) sets of nodes are
unable to connect to each other).

9

Consistency, Availability & Partition
Tolerance (CAP)
• Eventual consistency prefers availability over consistency and

partition tolerance. All the writes are eventually (not immediately)
seen by all the nodes.
• In the event of network partitions, all the nodes may not have the most

recent updates and may return inconsistent or outdated information.

• Strong consistency prefers consistency and partition tolerance over
availability. All updates are immediately available to all clients.
• In the event of network partitions, the system can become unavailable to

ensure consistency.

10

Bloom Filter

• Allows efficiently testing
whether an element is a
member of a set.

• Uses an array of m bits which
are initially set to 0.

• Uses k hash functions, which
map the element to k bit
positions and these bits are
set to 1.

• It might report false positives.

11

Materialized Views

• For queries that are frequently performed, it is beneficial to pre-
compute such queries to improve the response times.

• Such pre-computed views are called Materialized Views.

• These views avoid queries that are:
• too complex to compute in real-time (such as complex joins)

• or involve large volumes of data to be aggregated.

• These views can be updated:
• on a regular basis (hourly or daily basis).

• or every time there is an update to the data involved (for example, every time
a new order comes in).

12

Lambda Architecture

• Lambda architecture can be used to respond to queries in an ad-hoc
manner by pre-computing the views.

• The batch layer processes all the data

• The speed layer only processes the most recent data.

13

Scheduler-Agent-Supervisor

• This pattern is used to make
the system more resilient
and fault tolerant.
• The Scheduler assigns tasks

to the workers and tracks
progress.

• The Agent is responsible for
communicating with the
scheduler and the worker
node.

• The Supervisor checks which
tasks have failed or timed
out, and notifies the
Scheduler to retry the tasks.

14

Pipes & Filters

• To improve performance,
split a complex task into a
series of distinct tasks (Pipes
and Filters pattern).

• By running multiple workers
for each task, processing can
be done in parallel and
reliably.

15

Web Service

• A client application that
accesses the big data
systems can be decoupled
from the big data system
by using a web service.

• Web services provide:
• Abstraction
• Security

• The gatekeeper performs
authentication and
authorization.

16

Consensus in Distributed Systems

• Required for agreeing on a data value to commit, a node to act as the
leader, etc.

• Complicated when some nodes can fail.

• Correct protocol should satisfy:
• Agreement: The nodes in the distributed system must agree on some value.
• Validity: Only a value that has been proposed by some node must be chosen.
• Termination: All nodes must eventually agree on some value.

• Paxos protocol defines the following actors:
• Proposer is the node which initiates the protocol and acts as the coordinator.
• Acceptors are the nodes which try to agree on some proposed value.
• Learners are the nodes which learn the accepted value.
• Roles can be changed.

17

Paxos Protocol

• Steps:
• Prepare: send a proposal with

sequence number N.
• Promise: If N > previous Ns, the

acceptor promises (and send
previous accepted values) that
all future proposals with a
sequence number < N will be
rejected.

• Accept request is sent after
getting majority promises.

• Accepted value is broadcasted.

• The Paxos Algorithm (YouTube)

18

https://youtu.be/d7nAGI_NZPk

Outline

• Analytics Architectural Components &
Styles
• Load Leveling with Queues
• Load Balancing with Multiple Consumers
• Leader Election
• Sharding
• Consistency, Availability & Partition

Tolerance (CAP)
• Bloom Filter
• Materialized Views
• Lambda Architecture
• Scheduler-Agent-Supervisor
• Pipes & Filters
• Web Service
• Consensus in Distributed Systems

• MapReduce Patterns
• Numerical Summarization
• Top-N
• Filter
• Distinct
• Binning
• Inverted Index
• Sorting
• Joins

19

MapReduce Patterns

• YouTube Video: Learn MapReduce with Playing Cards from Jesse
Anderson

https://youtu.be/bcjSe0xCHbE

20

https://youtu.be/bcjSe0xCHbE

MapReduce Patterns

• MapReduce is a programming
model for processing data on large
clusters.

• Hadoop is an open-source, large-
scale distributed batch processing
framework, which implements the
MapReduce model.

• MapReduce has three phases
• Map: split and map

• Sort: merge and sort

• Reduce

21

MapReduce Patterns

• The MapReduce system takes care of partitioning the data,
scheduling of jobs, communication between nodes in the cluster, and
failover.

• Each phase has key-value as input and output.

22

Phase Input Output

Map: split and map (K, V) (K, V)

Sort: merge and sort (K, V) (K, list(V))

Reduce (K, list(V)) (K, V)

Numerical Summarization

• Numerical summarization patterns are used to compute various
statistics:
• Count
• Minimum/Maximum
• Average

• Example data is collected by a web analytics of page visits. Each visit
to a page is logged as one row in the log.
• Timestamp: Date (YYYY-MM-DD), Time (HH:MM:SS)
• Page URL
• Visitor’s IP address
• Visit-Length.

23

1. Python program for computing count
with MapReduce

• Compute the total number of times each page is visited in 2014.

• The mapper emits the pages visited in 2014 with value is ‘1’.

• The reducer function receives the key-value pairs grouped by the
same key and adds up the values for each group to compute count.

24

1. Python program for computing count
with MapReduce

Total number of times each page is visited in 2014
from mrjob.job import MRJob
class MRmyjob(MRJob):

def mapper(self, _, line):
Split the line of tab separated fields
data = line.split('\t’)
Parse line
date = data[0].strip()
url = data[2].strip()
Extract year from date
year = date[0:4]
Emit if year is 2014
if year == '2014':

yield url, 1

def reducer(self, key, list_of_values):
yield key, sum(list_of_values)

if __name__ == '__main__':
MRmyjob.run()

25

1. Computing count with MapReduce

26

2. Python program for computing maximum
with MapReduce

• Compute the most visited page per month in 2014.

• The mapper emits the (month, page) visited in 2014 with value is ‘1’.

• Two-phase reducer
1. (month, page), list(1) → month, (sum(list()), page)

2. month, list(visits, page) → month, max(list())

27

2. Python program for computing maximum
with MapReduce

28

Most visited page per month in 2014

class MRmyjob(MRJob):
def mapper1(self, _, line):

Split the line
data = line.split('\t')
Parse line
date = data[0].strip()
url = data[2].strip()
Extract year from date
year = date[0:4]
month = date[5:7]
Emit if year is 2014
if year == '2014':

yield (month,url), 1

def reducer1(self, key, vlist):
yield key[0], (sum(vlist), key[1])

def reducer2(self, key, vlist):
yield key, max(vlist)

def steps(self):
return [self.mr(

mapper=self.mapper1,
reducer=self.reducer1),

self.mr(reducer=self.reducer2)]

2. Computing maximum with MapReduce

29

3. Python program for computing average
with MapReduce

• Compute the average visit length per page.

• The mapper emits the page with value is visit length.

• The reducer function receives the key-value pairs grouped by the
page and computes the average of visit lengths.

30

3. Python program for computing average
with MapReduce

31

Average visit length for each page

class MRmyjob(MRJob):
def mapper(self, _, line):

Split the line
data = line.split('\t')
Parse line
url = data[2].strip()
visit_len = int(data[4].strip())
yield url, visit_len

def reducer(self, key, vlist):
count = 0
total = 0.0
for x in vlist:

total += x
count += 1

avgLen = ("%.2f" % (total/count))
yield key, avgLen

3. Computing average with MapReduce

32

Top-N

• Find the top 3 visited pages in 2014.

• The mapper emits the (page, 1) visited in 2014.

• Two-phase reducer
1. page, list(1) → None, (sum(list()), page)

2. None, list(visits, page) → sorted list[:3]

33

Top-N

34

Top 3 visited page in 2014

class MRmyjob(MRJob):
def mapper1(self, _, line):

Split the line
data = line.split('\t')
Parse line
date = data[0].strip()
url = data[2].strip()
Extract year from date
year = date[0:4]
Emit if year is 2014
if year == '2014':

yield url, 1

def reducer1(self, key, vlist):
total_count = sum(vlist)
yield None, (total_count, key)

def reducer2(self, _, vlist):
N = 3
vlist = sorted(list(vlist), reverse=True)
return vlist[:N]

def steps(self):
return [self.mr(

mapper=self.mapper1,
reducer=self.reducer1),

self.mr(reducer=self.reducer2)]

Computing Top-N with MapReduce

35

Filter
Filter all page visits for the page ’contact.html’ in the month of Dec 2014.
class MRmyjob(MRJob):

def mapper(self, _, line):
Split the line
data = line.split('\t')
Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
Extract year from date
year = date[0:4]
month = date[5:7]
Emit if year is 2014
if year=='2014' and month=='12' and url=='http://example.com/contact.html':

yield url, (date, time, ip, visit_len)
36

This is a mapper
only problem; no
need for a reducer.

Filtering with MapReduce

37

Distinct

38

Distint IP addresses

class MRmyjob(MRJob):
def mapper(self, _, line):

Split the line with tab separated fields
data = line.split('\t')
Parse line
ip = data[3].strip()
yield ip, None

def reducer(self, key, list_of_values):
yield key, None

The reducer receives key-value pairs
grouped by the same key and emits
the key and value as None.

Finding distinct with MapReduce

39

Binning

40

Parition records by Quarter

class MRmyjob(MRJob):
def mapper(self, _, line):

Split the line
data = line.split('\t')
Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
Extract year from date
year = date[0:4]
month = int(date[5:7])

Binning requires a Map task only. The
mapper function emits key-value pairs
where the key is the bin and value is
the record.

Binning

41

Emit if year is 2014
if year == '2014':

if month <= 3:
yield "Q1", (date, time, url, ip, visit_len)

elif month <= 6:
yield "Q2", (date, time, url, ip, visit_len)

elif month <= 9:
yield "Q3", (date, time, url, ip, visit_len)

else:
yield "Q4", (date, time, url, ip, visit_len)

Binning data with MapReduce

42

Inverted Index

43

Inverted index

class MRmyjob(MRJob):
def mapper(self, _, line):

doc_id, content = line.split('|')
words = content.split()
for word in words:

yield word, doc_id

def reducer(self, key, list_of_values):
docs = []
for x in list_of_values:

docs.append(x)
yield key, docs

• Is an index data structure
which stores the mapping
from the content (words in a
document) to the location.

• The mapper emits key-value
pairs where key contains the
word, and the value is a
unique identifier of the
document.

• The reducer function receives
the list of IDs grouped by the
same word and emits a word
and the list of IDs.

Computing inverted index with MapReduce

44

Sorting

45

Sort by visit length

class MRmyjob(MRJob):
def mapper(self, _, line):

Split the line
data = line.split('\t')
Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
Extract year from date
year=date[0:4]
Emit if year is 2014
if year == '2014':

yield None, (visit_len, (date, time, url, ip))

def reducer(self, key, vlist):
vlist = sorted(list(vlist), reverse=True)
return vlist

Sorting with MapReduce

46

Joins

• Joins combine two or more
datasets or records in
multiple files, based on a
field (called the join
attribute or foreign key).
• Inner

• Full outer

• Left outer

• Right outer

47

Example inner join of two datasets

• Employees: ID, Employee Name, Department ID, Joining Date, Salary

• Departments: ID, Department Name, Number of Employees

• The mapper parses each line of the input and emits key-value pairs
where the key is the Department ID and value is the complete
record.

• The reducer receives the list of values all grouped by the Department
ID, checks the first field of each value and if the field is ’Employee’,
adds it to an employees list and if the first field is ’Department’, adds
it to the departments list, and emits employees with departments.

48

Python program for computing inner join
with MapReduce

49

class MyMRJob(MRJob):
def mapper(self, _, line):

data = line.split('\t')
if data[0] == 'Employee':

deptID = data[3]
elif data[0] == 'Department':

deptID = data[1]
yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = []
departments = []
for v in values:

if v[0] == 'Employee':
employees.append(v)

elif v[0] == 'Department':
departments.append(v)

Inner Join
for e in employees:

for d in departments:
yield None, (e+d)

Computing join with MapReduce

50

Summary

• Analytics Architectural Components &
Styles
• Load Leveling with Queues
• Load Balancing with Multiple Consumers
• Leader Election
• Sharding
• Consistency, Availability & Partition

Tolerance (CAP)
• Bloom Filter
• Materialized Views
• Lambda Architecture
• Scheduler-Agent-Supervisor
• Pipes & Filters
• Web Service
• Consensus in Distributed Systems

• MapReduce Patterns
• Numerical Summarization
• Top-N
• Filter
• Distinct
• Binning
• Inverted Index
• Sorting
• Joins

51

