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Load Leveling with Queues

• Queues allow decoupling of the producers and consumers.
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Load Balancing with Multiple Consumers

• Multiple consumers improve performance and reliability.

• Read, hide, delete (or unhide, read, …) pattern
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Leader Election

• Coordination in big data system is done by the leader node.

• Leader election is a mechanism by which the instances in a 
distributed system can elect one of the instances as their leader.

• Options
• Elect the instance of the largest ID

• Bully algorithm: 
• Each instance know the IDs of the others

• When an instance detects leader failure, it sends election message to instances of higher 
IDs.

• If no response is received, it declares itself as the leader.

• Otherwise, it receives election message from an instance of higher ID.
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Sharding

• Horizontally partitioning the data across multiple storage nodes in a 
data storage system.

• Allows storing huge data, improves throughput, and improves 
reliability (data shards replicated in multiple nodes).

• Scaling up can be by adding additional nodes.

• Sharding that can either be managed by the application or the data
storage system.

• Use one or more fields in the data as the shard key (or partition key).
• Use a hash function to evenly partition the data across the storage nodes.
• Sore data within a range of shard keys in one shard.
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Sharding
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Consistency, Availability & Partition 
Tolerance (CAP)
• CAP Theorem: under partitioning, a distributed data system can 

either be consistent or available but not both at the same time.

• In a consistent system, all reads are guaranteed to incorporate the 
previous writes.

• Availability refers to the ability of the system to respond to all the 
queries without being unavailable.

• Partition tolerance is the ability of the system to continue performing 
in the event of network partitions (two (or more) sets of nodes are 
unable to connect to each other).
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Consistency, Availability & Partition 
Tolerance (CAP)
• Eventual consistency prefers availability over consistency and 

partition tolerance. All the writes are eventually (not immediately) 
seen by all the nodes.
• In the event of network partitions, all the nodes may not have the most 

recent updates and may return inconsistent or outdated information.

• Strong consistency prefers consistency and partition tolerance over 
availability. All updates are immediately available to all clients.
• In the event of network partitions, the system can become unavailable to 

ensure consistency.
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Bloom Filter

• Allows efficiently testing 
whether an element is a 
member of a set.

• Uses an array of m bits which 
are initially set to 0.

• Uses k hash functions, which 
map the element to k bit 
positions and these bits are 
set to 1.

• It might report false positives.
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Materialized Views

• For queries that are frequently performed, it is beneficial to pre-
compute such queries to improve the response times.

• Such pre-computed views are called Materialized Views.

• These views avoid queries that are:
• too complex to compute in real-time (such as complex joins)

• or involve large volumes of data to be aggregated.

• These views can be updated:
• on a regular basis (hourly or daily basis).

• or every time there is an update to the data involved (for example, every time 
a new order comes in).
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Lambda Architecture

• Lambda architecture can be used to respond to queries in an ad-hoc 
manner by pre-computing the views.

• The batch layer processes all the data

• The speed layer only processes the most recent data.
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Scheduler-Agent-Supervisor

• This pattern is used to make 
the system more resilient 
and fault tolerant.
• The Scheduler assigns tasks 

to the workers and tracks 
progress.

• The Agent is responsible for 
communicating with the 
scheduler and the worker 
node.

• The Supervisor checks which 
tasks have failed or timed 
out, and notifies the 
Scheduler to retry the tasks.
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Pipes & Filters

• To improve performance, 
split a complex task into a 
series of distinct tasks (Pipes 
and Filters pattern).

• By running multiple workers 
for each task, processing can 
be done in parallel and 
reliably.
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Web Service

• A client application that 
accesses the big data 
systems can be decoupled 
from the big data system 
by using a web service.

• Web services provide:
• Abstraction
• Security

• The gatekeeper performs 
authentication and 
authorization.
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Consensus in Distributed Systems

• Required for agreeing on a data value to commit, a node to act as the 
leader, etc.

• Complicated when some nodes can fail.

• Correct protocol should satisfy:
• Agreement: The nodes in the distributed system must agree on some value.
• Validity: Only a value that has been proposed by some node must be chosen.
• Termination: All nodes must eventually agree on some value.

• Paxos protocol defines the following actors:
• Proposer is the node which initiates the protocol and acts as the coordinator.
• Acceptors are the nodes which try to agree on some proposed value.
• Learners are the nodes which learn the accepted value.
• Roles can be changed.
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Paxos Protocol

• Steps:
• Prepare: send a proposal with 

sequence number N.
• Promise: If N > previous Ns, the 

acceptor promises (and send 
previous accepted values) that 
all future proposals with a 
sequence number < N will be 
rejected.

• Accept request is sent after 
getting majority promises.

• Accepted value is broadcasted.

• The Paxos Algorithm (YouTube)
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MapReduce Patterns

• YouTube Video: Learn MapReduce with Playing Cards from  Jesse 
Anderson

https://youtu.be/bcjSe0xCHbE
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MapReduce Patterns

• MapReduce is a programming 
model for processing data on large 
clusters.

• Hadoop is an open-source, large-
scale distributed batch processing 
framework, which implements the 
MapReduce model.

• MapReduce has three phases
• Map: split and map

• Sort: merge and sort

• Reduce
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MapReduce Patterns

• The MapReduce system takes care of partitioning the data, 
scheduling of jobs, communication between nodes in the cluster, and 
failover.

• Each phase has key-value as input and output.
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Phase Input Output

Map: split and map (K, V) (K, V)

Sort: merge and sort (K, V) (K, list(V))

Reduce (K, list(V)) (K, V)



Numerical Summarization

• Numerical summarization patterns are used to compute various 
statistics:
• Count
• Minimum/Maximum
• Average

• Example data is collected by a web analytics of page visits. Each visit 
to a page is logged as one row in the log. 
• Timestamp: Date (YYYY-MM-DD), Time (HH:MM:SS)
• Page URL
• Visitor’s IP address
• Visit-Length.
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1. Python program for computing count 
with MapReduce

• Compute the total number of times each page is visited in 2014.

• The mapper emits the pages visited in 2014 with value is ‘1’.

• The reducer function receives the key-value pairs grouped by the 
same key and adds up the values for each group to compute count.
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1. Python program for computing count 
with MapReduce

# Total number of times each page is visited in 2014
from mrjob.job import MRJob
class MRmyjob(MRJob):

def mapper(self, _, line):
# Split the line of tab separated fields
data = line.split('\t’)
# Parse line
date = data[0].strip()
url = data[2].strip()
# Extract year from date
year = date[0:4]
# Emit if year is 2014
if year == '2014':

yield url, 1

def reducer(self, key, list_of_values):
yield key, sum(list_of_values)

if __name__ == '__main__':
MRmyjob.run()

25



1. Computing count with MapReduce

26



2. Python program for computing maximum 
with MapReduce

• Compute the most visited page per month in 2014.

• The mapper emits the (month, page) visited in 2014 with value is ‘1’.

• Two-phase reducer
1. (month, page), list(1) → month, (sum(list()), page)

2. month, list(visits, page) → month, max(list())
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2. Python program for computing maximum 
with MapReduce
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# Most visited page per month in 2014

class MRmyjob(MRJob):
def mapper1(self, _, line):

# Split the line
data = line.split('\t')
# Parse line
date = data[0].strip()
url = data[2].strip()
# Extract year from date
year = date[0:4]
month = date[5:7]
# Emit if year is 2014
if year == '2014':

yield (month,url), 1

def reducer1(self, key, vlist):
yield key[0], (sum(vlist), key[1])

def reducer2(self, key, vlist):
yield key, max(vlist)

def steps(self):
return [self.mr(

mapper=self.mapper1,
reducer=self.reducer1),

self.mr(reducer=self.reducer2)]



2. Computing maximum with MapReduce
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3. Python program for computing average 
with MapReduce

• Compute the average visit length per page.

• The mapper emits the page with value is visit length.

• The reducer function receives the key-value pairs grouped by the 
page and computes the average of visit lengths.
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3. Python program for computing average 
with MapReduce
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# Average visit length for each page

class MRmyjob(MRJob):
def mapper(self, _, line):

# Split the line
data = line.split('\t')
# Parse line
url = data[2].strip()
visit_len = int(data[4].strip())
yield url, visit_len

def reducer(self, key, vlist):
count = 0
total = 0.0
for x in vlist:

total += x
count += 1

avgLen = ("%.2f" % (total/count))
yield key, avgLen



3. Computing average with MapReduce
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Top-N

• Find the top 3 visited pages in 2014.

• The mapper emits the (page, 1) visited in 2014.

• Two-phase reducer
1. page, list(1) → None, (sum(list()), page)

2. None, list(visits, page) → sorted list[:3]
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Top-N
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# Top 3 visited page in 2014

class MRmyjob(MRJob):
def mapper1(self, _, line):

# Split the line
data = line.split('\t')
# Parse line
date = data[0].strip()
url = data[2].strip()
# Extract year from date
year = date[0:4]
# Emit if year is 2014
if year == '2014':

yield url, 1

def reducer1(self, key, vlist):
total_count = sum(vlist)
yield None, (total_count, key)

def reducer2(self, _, vlist):
N = 3
vlist = sorted(list(vlist), reverse=True)
return vlist[:N]

def steps(self):
return [self.mr(

mapper=self.mapper1,
reducer=self.reducer1),

self.mr(reducer=self.reducer2)]



Computing Top-N with MapReduce
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Filter
# Filter all page visits for the page ’contact.html’ in the month of Dec 2014.
class MRmyjob(MRJob):

def mapper(self, _, line):
# Split the line
data = line.split('\t')
# Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
# Extract year from date
year = date[0:4]
month = date[5:7]
# Emit if year is 2014
if year=='2014' and month=='12' and url=='http://example.com/contact.html':

yield url, (date, time, ip, visit_len)
36

This is a mapper 
only problem; no 
need for a reducer.



Filtering with MapReduce
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Distinct
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# Distint IP addresses

class MRmyjob(MRJob):
def mapper(self, _, line):

# Split the line with tab separated fields
data = line.split('\t')
# Parse line
ip = data[3].strip()
yield ip, None

def reducer(self, key, list_of_values):
yield key, None

The reducer receives key-value pairs 
grouped by the same key and emits 
the key and value as None.



Finding distinct with MapReduce
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Binning
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# Parition records by Quarter

class MRmyjob(MRJob):
def mapper(self, _, line):

# Split the line 
data = line.split('\t')
# Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
# Extract year from date
year = date[0:4]
month = int(date[5:7])

Binning requires a Map task only. The 
mapper function emits key-value pairs 
where the key is the bin and value is 
the record.



Binning
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# Emit if year is 2014
if year == '2014':

if month <= 3:
yield "Q1", (date, time, url, ip, visit_len)

elif month <= 6:
yield "Q2", (date, time, url, ip, visit_len)

elif month <= 9:
yield "Q3", (date, time, url, ip, visit_len)

else:
yield "Q4", (date, time, url, ip, visit_len)



Binning data with MapReduce
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Inverted Index
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# Inverted index

class MRmyjob(MRJob):
def mapper(self, _, line):

doc_id, content = line.split('|')
words = content.split()
for word in words:

yield word, doc_id

def reducer(self, key, list_of_values):
docs = []
for x in list_of_values:

docs.append(x)
yield key, docs

• Is an index data structure 
which stores the mapping 
from the content (words in a 
document) to the location.

• The mapper emits key-value 
pairs where key contains the 
word, and the value is a 
unique identifier of the 
document.

• The reducer function receives 
the list of IDs grouped by the 
same word and emits a word 
and the list of IDs.



Computing inverted index with MapReduce
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Sorting
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# Sort by visit length

class MRmyjob(MRJob):
def mapper(self, _, line):

# Split the line
data = line.split('\t')
# Parse line
date = data[0].strip()
time = data[1].strip()
url = data[2].strip()
ip = data[3].strip()
visit_len = int(data[4].strip())
# Extract year from date
year=date[0:4]
# Emit if year is 2014
if year == '2014':

yield None, (visit_len, (date, time, url, ip))

def reducer(self, key, vlist):
vlist = sorted(list(vlist), reverse=True)
return vlist



Sorting with MapReduce
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Joins

• Joins combine two or more 
datasets or records in 
multiple files, based on a 
field (called the join 
attribute or foreign key).
• Inner

• Full outer

• Left outer

• Right outer
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Example inner join of two datasets

• Employees: ID, Employee Name, Department ID, Joining Date, Salary

• Departments: ID, Department Name, Number of Employees

• The mapper parses each line of the input and emits key-value pairs 
where the key is the Department ID and value is the complete 
record.

• The reducer receives the list of values all grouped by the Department 
ID, checks the first field of each value and if the field is ’Employee’, 
adds it to an employees list and if the first field is ’Department’, adds 
it to the departments list, and emits employees with departments.
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Python program for computing inner join 
with MapReduce
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class MyMRJob(MRJob):
def mapper(self, _, line):

data = line.split('\t')
if data[0] == 'Employee':

deptID = data[3]
elif data[0] == 'Department':

deptID = data[1]
yield deptID, data

def reducer(self, key, list_of_values):
values = list(list_of_values)
employees = []
departments = []
for v in values:

if v[0] == 'Employee':
employees.append(v)

elif v[0] == 'Department':
departments.append(v)

# Inner Join
for e in employees:

for d in departments:
yield None, (e+d)



Computing join with MapReduce
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