Recurrent Neural Networks

Prof. Gheith Abandah

Reference

Chapter 15: Processing Sequences Using RNNs and CNNs

- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 2nd Edition, 2019
 - Material: <u>https://github.com/ageron/handson-ml2</u>

Reference

Deep Learning with Python, by François Chollet, Manning Pub.
 2018

Outline

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises

Introduction

 YouTube Video: Deep Learning with Tensorflow - The Recurrent Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0

1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series data or sequences.

• Applications:

- Predicting the future (stock prices)
- Autonomous driving systems (predicting trajectories)
- Natural language processing (automatic translation, speech-to-text, or sentiment analysis)
- Creativity (music composition, handwriting, drawing)
- Image analysis (image captions)

Outline

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises

2. Recurrent Neurons and Layers

• The figure below shows a **recurrent neuron** (left), unrolled through time (right).

2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

• The **output** of the layer is: $\mathbf{Y}_{(t)} = \phi \left(\mathbf{X}_{(t)} \cdot \mathbf{W}_x + \mathbf{Y}_{(t-1)} \cdot \mathbf{W}_y + \mathbf{b} \right)$

2. Recurrent Neurons and Layers

- Recurrent neurons have memory (hold state) and are called **memory cells**.
- The state $\mathbf{h}_{(t)} = f(\mathbf{h}_{(t-1)}, \mathbf{x}_{(t)})$, not always $\equiv \mathbf{y}_{(t)}$

2. Recurrent Neurons and Layers: Input and Output Sequences

- **1.** Seq to seq net.: For predicting the future.
- 2. Seq to vector: For analysis, e.g., sentiment score.
- **3. Vector to seq**: For image captioning.
- **4. Encoder-decoder**: For sequence transcription.

Outline

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises

3. Training RNNs

- Training using strategy called backpropagation through time (BPTT).
- Forward pass (dashed)
- **Cost function** of the not-ignored outputs.
- Cost gradients are propagated backward through the unrolled network.

Outline

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises

4. Forecasting a Time Series

- The data is a sequence of one or more values per time step.
 - Univariate time series
 - Multivariate time series
- Forecasting: predicting future values
 - Forecast the **next** value
 - Forecast N next values

4.1 Implementing a Simple RNN

X_test, y_test = series[9000:, :n_steps], series[9000:, -1]

4.1 Implementing a Simple RNN

model.evaluate(X_valid, y_valid) # MSE = 0.011, Dense achieves 0.004

4.2 Deep RNNs

4.2 Deep RNNs

```
# Sequential model of two hidden RNN layers
model = keras.models.Sequential([
    keras.layers.SimpleRNN(20,
        return_sequences=True, # output all steps
        input_shape=[None, 1]),
    keras.layers.SimpleRNN(20),
    keras.layers.Dense(1)
])
```

```
# MSE = 0.0026
```

4.3 Forecasting Several Time Steps Ahead

- Can train an RNN to predict all **N next** values at once (sequence-to-vector model).
- The output layer should have N neurons.

4.3 Forecasting Several Time Steps Ahead

Generate 10,000 time series with 10 steps ahead
series = generate_time_series(10000, n_steps + 10)

```
# Split them 7,000 : 2,000 : 1,000
X_train, y_train = series[:7000, :n_steps],
    series[:7000, -10:, 0] #(7000, 50, 1), (7000,10)
X_valid, y_valid = series[7000:9000, :n_steps],
    series[7000:9000, -10:, 0]
X_test, y_test = series[9000:, :n_steps],
    series[9000:, -10:, 0]
```

4.3 Forecasting Several Time Steps Ahead

MSE = 0.008

Outline

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises

5. Handling Long Sequences

- Training long sequences has two major challenges:
 - Unstable gradients
 - Forgetting the first inputs in the sequence
- For the **unstable gradients**:
 - **Does not help**: ReLU activation, batch normalization
 - Helps: good parameter initialization, faster optimizers, dropout

5. Handling Long Sequences

- To solve the **short-term memory problem**, use
 - LSTM cell
 - GRU cell
- These cells can be used in place of SimpleRNN

5.1 LSTM Cell

- The Long Short-Term Memory (LSTM) cell was proposed in 1997.
- Training converges faster and it detects long-term dependencies in the data.
- h_(t) as the short-term state and
 c_(t) as the long-term state.

5.2 GRU Cell

- The Gated Recurrent Unit (GRU) cell was proposed in 2014.
- Simplified version of the LSTM cell, performs just as well.
- A single gate controls the forget gate and the input gate.

6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What about a sequence-to-vector RNN, and a vector-to-sequence RNN?

- 15.2. How many dimensions must the inputs of an RNN layer have? What does each dimension represent? What about its outputs?
- 15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers should have return_sequences=True? What about a sequence-to-vector RNN?
- 15.4. Suppose you have a daily univariate time series, and you want to forecast the next seven days. Which RNN architecture should you use?
- 15.5. What are the main difficulties when training RNNs? How can you handle them?

15.6. Can you sketch the LSTM cell's architecture?

Summary

- 1. Introduction
- 2. Recurrent neurons and layers
- 3. Training RNNs
- 4. Forecasting a time series
 - 1. Implementing a simple RNN
 - 2. Deep RNNs
 - 3. Forecasting Several Time Steps Ahead
- 5. Handling long sequences
 - 1. LSTM cell
 - 2. GRU cell
- 6. Exercises