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Reference

• Chapter 15: Processing Sequences Using
RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Reference

• Deep Learning with Python, by François Chollet, Manning Pub. 
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Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent 
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0
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1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series 
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or 
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)

6



Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

7



2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left), unrolled through 
time (right).
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2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:
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2. Recurrent Neurons and Layers

• Recurrent neurons have memory (hold state) and are called memory 
cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)
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2. Recurrent Neurons and Layers:
Input and Output Sequences

1. Seq to seq net.: For predicting 
the future.

2. Seq to vector: For analysis, 
e.g., sentiment score.

3. Vector to seq: For image 
captioning.

4. Encoder-decoder:  For 
sequence transcription.
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3. Training RNNs

• Training using strategy called 
backpropagation through time
(BPTT).

• Forward pass (dashed)

• Cost function of the not-ignored 
outputs.

• Cost gradients are propagated
backward through the unrolled 
network.
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4. Forecasting a Time Series

• The data is a sequence of one or 
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future 
values
• Forecast the next value

• Forecast N next values

15



4.1 Implementing a Simple RNN

# Generate 10,000 time series

n_steps = 50

series = generate_time_series(10000, n_steps + 1)

# Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps], series[:7000, -1]

# (7000, 50, 1), (7000, 1)

X_valid, y_valid = series[7000:9000, :n_steps], series[7000:9000, -1]

X_test, y_test = series[9000:, :n_steps], series[9000:, -1]
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4.1 Implementing a Simple RNN

# Sequential model of one neuron

model = keras.models.Sequential([

keras.layers.SimpleRNN(1, input_shape=[None, 1])

])

optimizer = keras.optimizers.Adam(lr=0.005)

model.compile(loss="mse", optimizer=optimizer)

history = model.fit(X_train, y_train, epochs=20,

validation_data=(X_valid, y_valid))

model.evaluate(X_valid, y_valid) # MSE = 0.011, Dense achieves 0.004
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Uses tanh
activation ht = yt



4.2 Deep RNNs
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4.2 Deep RNNs

# Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20,

return_sequences=True, # output all steps

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(1)

])

# MSE = 0.0026
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4.3 Forecasting Several Time Steps Ahead

• Can train an RNN to predict all N next values at once (sequence-to-
vector model).

• The output layer should have N neurons.
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4.3 Forecasting Several Time Steps Ahead

# Generate 10,000 time series with 10 steps ahead

series = generate_time_series(10000, n_steps + 10)

# Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps],

series[:7000, -10:, 0] #(7000, 50, 1), (7000,10)

X_valid, y_valid = series[7000:9000, :n_steps],

series[7000:9000, -10:, 0]

X_test, y_test = series[9000:, :n_steps],

series[9000:, -10:, 0]
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4.3 Forecasting Several Time Steps Ahead

# Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20, return_sequences=True,

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(10)

])

# MSE = 0.008
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5. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers, dropout

model = Sequential()

model.add(layers.SimpleRNN(20, dropout=0.2, recurrent_dropout=0.2, 
input_shape=[None, 1]))

model.add(layers.Dense(1))
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To fight overfitting and 
unstable gradients



5. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN
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5.1 LSTM Cell

• The Long Short-Term Memory 
(LSTM) cell was proposed in 
1997.

• Training converges faster and it 
detects long-term dependencies 
in the data.

• h(t) as the short-term state and 
c(t) as the long-term state.
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model.add(LSTM(20))



5.2 GRU Cell

• The Gated Recurrent Unit (GRU) 
cell was proposed in 2014.

• Simplified version of the LSTM 
cell, performs just as well.

• A single gate controls the forget 
gate and the input gate.
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model.add(GRU(20))



6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What 
about a sequence-to-vector RNN, and a vector-to-sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? What does 
each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers 
should have return_sequences=True? What about a sequence-to-vector RNN?

15.4. Suppose you have a daily univariate time series, and you want to forecast the 
next seven days. Which RNN architecture should you use?

15.5. What are the main difficulties when training RNNs? How can you handle 
them?

15.6. Can you sketch the LSTM cell’s architecture?
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