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Introduction

• YouTube Video: Convolutional Neural Networks (CNNs) explained 
from Deeplizard

https://youtu.be/YRhxdVk_sIs
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1. Introduction

• Convolutional neural networks (CNNs) emerged from the study of 
the brain’s visual cortex.

• Many neurons in the visual cortex have a small local receptive field.
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2. Convolutional Layer

• Neurons in one layer are not 
connected to every single 
pixel/neuron in the previous 
layer, but only to pixels/neurons 
in their receptive fields.

• This architecture allows the 
network to concentrate on low-
level features in one layer, then 
assemble them into higher-level
features in the next layer.

• Each layer is represented in 2D.
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2. Convolutional Layer

• fh and fw are the height and 
width of the receptive field.

• Zero padding: In order for a 
layer to have the same height 
and width as the previous layer, 
it is common to add zeros 
around the inputs.

9



2. Convolutional Layer

• It is also possible to connect a large 
input layer to a smaller layer by 
spacing out the receptive fields.

• The distance between two 
consecutive receptive fields is 
called the stride.

• A neuron located in row i, column j
is connected to the neurons in the 
previous layer located in:
• Rows: i × sh to i × sh + fh – 1

• Cols:   j × sw to j × sw + fw – 1
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2. Convolutional Layer

• Keras supports
• No padding (default)

padding="VALID"

• Zero padding 
padding="SAME"

• Example:
• Input width: 13

• Filter width: 6

• Stride: 5
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2. Convolutional Layer
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2.1 Filters

• A neuron’s weights can be 
represented as a small image the 
size of the receptive field, called 
filters.

• When all neurons in a layer use 
the same line filters, we get the 
feature maps on the top.
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2.2 Stacking Feature Maps

• In reality, each layer is 3D
composed of several feature maps 
of equal sizes.

• Within one feature map, all 
neurons share the same 
parameters, but different feature 
maps may have different
parameters.

• Once the CNN has learned to 
recognize a pattern in one 
location, it can recognize it in any 
other location.
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2.3 Mathematical Summary

• zi, j, k is the output of the neuron located in row i, column j in feature 
map k 

• fn′ is the number of feature maps in the previous layer
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2.4 Memory Requirements

• Convolutional layers require a huge amount of RAM.

• Example: Convolutional layer with 5 × 5 filters, 200 feature maps of 
size 150 × 100, with stride 1 and "same" padding. Input is RGB image 
(three channels).
• Parameters = (5 × 5 × 3 + 1) × 200 = 15,200

• Size of feature maps (single precision) = 200 × 150 × 100 × 4 = 12 MB of RAM

• 1.2 GB of RAM for a mini batch of 100 instances
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3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input image in order to 
reduce the computational load, the memory usage, and the number 
of parameters.

• It aggregates the inputs using max or mean.
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4. CNN Architectures

• Stack few convolutional layers (each one generally followed by a 
ReLU layer), then a pooling layer, then another few convolutional 
layers, then another pooling layer, and so on. The image gets smaller 
and smaller, but it also gets deeper and deeper. At the end, a dense
NN is added.
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4.1 Example – Fashion MNIST
model = keras.models.Sequential([

keras.layers.Conv2D(64, 7, activation="relu", padding="same",
input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation="softmax")

])
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Feature maps

Filter size

2×2 window and stride 2



4.1 Example – Fashion MNIST

model.compile(loss="sparse_categorical_crossentropy",

optimizer="nadam", metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=10,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/10 55000/55000 [==============================] - 51s 923us/sample - loss: 

0.7183 - accuracy: 0.7529 - val_loss: 0.4029 - val_accuracy: 0.8510 

…

Epoch 10/10

55000/55000 [==============================] - 50s 911us/sample - loss: 0.2561 -

accuracy: 0.9145 - val_loss: 0.2891 - val_accuracy: 0.9036
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4.1 Example – Fashion MNIST

score = model.evaluate(X_test, y_test)

X_new = X_test[:10] # pretend we have new images

y_pred = model.predict(X_new)

10000/10000 [==============================] - 2s 239us/sample - loss: 

0.2972 - accuracy: 0.8983
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Can reach 92% with 
more epochs



4.2 ResNet

• Residual Network (or ResNet) won the ILSVRC 2015 challenge.

• Top-5 error rate under 3.6%, using an extremely deep CNN composed 
of 152 layers.

• To train such a deep network, it uses skip connections.
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4.2 ResNet

• The network can start making progress even if several layers have not 
started learning yet.
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4.2 ResNet

• ResNet is a stack of residual units.
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5. Using Pretrained Models

• Pretrained networks are readily available from the 
keras.applications package.

• Check https://github.com/keras-team/keras-applications

• You can load the ResNet-50 model, pretrained on ImageNet, with the 
following line of code:
model = keras.applications.resnet50.ResNet50(weights="imagenet")
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5. Using Pretrained Models

# Input: 224 × 224-pixel images
images_resized = tf.image.resize(images, [224, 224])

# Preprocess images, should be scaled 0-255
inputs = keras.applications.resnet50.preprocess_input(

images_resized * 255)

Y_proba = model.predict(inputs)

# Get top predictions out of the 1000-class probs.
top_K = keras.applications.resnet50.decode_predictions(Y_proba, top=3)
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5. Using Pretrained Models

# Print results
for image_index in range(len(images)):

print("Image #{}".format(image_index))
for class_id, name, y_proba in top_K[image_index]:

print(" {} - {:12s} {:.2f}%".format(class_id, name, y_proba * 100))
print()

Image #0
n03877845 - palace 42.87%
n02825657 - bell_cote 40.57%
n03781244 - monastery 14.56%

Image #1
n04522168 - vase 46.83%
n07930864 - cup 7.78%
n11939491 - daisy 4.87%
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6. Pretrained Models for Transfer Learning 

• Training a pretrained network (Xception) for a dataset from TFDS 
(https://www.tensorflow.org/datasets).

• tf_flowers: 3670 images, 5 classes
# Load the dataset

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers",

as_supervised=True, with_info=True)

dataset_size = info.splits["train"].num_examples # 3670

n_classes = info.features["label"].num_classes   # 5

class_names = info.features["label"].names
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6. Pretrained Models for Transfer Learning 

# Relooad the dataset with three splits tf.data.Dataset

test_set_raw, valid_set_raw, train_set_raw = tfds.load(

"tf_flowers", split=["train[:10%]",

"train[10%:25%]", "train[25%:]"],

as_supervised=True)

# Define the preprocessing function

def preprocess(image, label):

resized_image = tf.image.resize(image, [224, 224])

final_image = keras.applications.xception.preprocess_input( 
resized_image)

return final_image, label
33



6. Pretrained Models for Transfer Learning 

# Apply this preprocessing function to the 3 datasets
# Shuffle the training set
# Add batching and prefetching to all the datasets

batch_size = 32

train_set = train_set_raw.shuffle(3000).repeat()

train_set = train_set.map(preprocess).batch(

batch_size).prefetch(1)

valid_set = valid_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

test_set = test_set_raw.map(preprocess).batch(

batch_size).prefetch(1)
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6. Pretrained Models for Transfer Learning 

# Load an Xception model, pretrained on ImageNet
#  excluding the global avg pool. and dense o/p layers

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

# Add global avg pool. layer based on model output

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

output = keras.layers.Dense(n_classes, # Add desnse o/p

activation="softmax")(avg)

model = keras.models.Model(inputs=base_model.input,

outputs=output) # Create the Keras Model
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6. Pretrained Models for Transfer Learning 

# Freeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = False

# Compile the model and start training

optimizer = keras.optimizers.SGD(lr=0.2, momentum=0.9,

decay=0.01) # LR=0.2 with scheudle, k=1/0.01

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=5,

validation_data=valid_set) # Tops at 75–80% acc. 
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6. Pretrained Models for Transfer Learning 

# Unfreeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = True

# Recompile with lower LR and decay

optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9,

nesterov=True, decay=0.001)

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=40,

validation_data=valid_set) # Result: 95% acc.
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7. Classification and Localization 

• Localizing an object in a picture can be expressed as a regression task. 

• Predict the horizontal and vertical coordinates of the object’s center and 
its height and width.
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Common metric: 
the Intersection 
over Union (IoU)



7. Classification and Localization

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

class_output = keras.layers.Dense(n_classes, activation="softmax")(avg)

loc_output = keras.layers.Dense(4)(avg)

model = keras.Model(inputs=base_model.input,

outputs=[class_output, loc_output])

model.compile(loss=["sparse_categorical_crossentropy "mse"],

loss_weights=[0.8, 0.2], 

optimizer=optimizer, metrics=["accuracy"])
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8. Object detection 

• The task of classifying and localizing multiple objects in an image.

• A slow approach is use a CNN trained to classify and locate a single 
object, then slide it across the image.
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8.1 Fully Convolutional Networks

• FCN has also a convolution 
layer at the output with valid
padding.

• FCN can process images of any
size.

• Example:
• Train the CNN for classification 

and localization on small images, 
10 outputs.

• For larger image, it output 8 × 8 
grid where each cell contains 10 
numbers.
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8.2 You Only Look Once (YOLO)

• YOLO is an extremely fast and accurate object detection architecture.
1. Resizes the input image to 448 × 448

2. Runs a single convolutional network on the image

3. Thresholds the resulting detections by the model’s confidence.
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8.2 You Only Look Once (YOLO)

• Models detection as a regression problem. It divides the image into 
an S × S grid.
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• For each grid cell 
predicts B bounding 
boxes, confidence for 
those boxes, and C
class probabilities. 
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9. Semantic Segmentation

• Each pixel is classified according to the class of the object it belongs 
to.

• Can use FCN followed by up sampling layers.
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Exercises

14.9. Build your own CNN from scratch and try to achieve the highest 
possible accuracy on MNIST.

14.10. Use transfer learning for large image classification, going 
through these steps:
a) Create a training set containing at least 100 images per class. For example, 

you could classify your own pictures based on the location (beach, 
mountain, city, etc.), or alternatively you can use an existing dataset (e.g., 
from TensorFlow Datasets).

b) Split it into a training set, a validation set, and a test set.
c) Build the input pipeline, including the appropriate preprocessing 

operations, and optionally add data augmentation.
d) Fine-tune a pretrained model on this dataset.
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