
Deep Computer Vision Using
Convolutional Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 14: Deep Computer Vision Using
Convolutional Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Reference

• Deep Learning with Python, by François Chollet, Manning Pub.

2018

3

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

4

Introduction

• YouTube Video: Convolutional Neural Networks (CNNs) explained
from Deeplizard

https://youtu.be/YRhxdVk_sIs

5

https://youtu.be/YRhxdVk_sIs

1. Introduction

• Convolutional neural networks (CNNs) emerged from the study of
the brain’s visual cortex.

• Many neurons in the visual cortex have a small local receptive field.

6

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

7

2. Convolutional Layer

• Neurons in one layer are not
connected to every single
pixel/neuron in the previous
layer, but only to pixels/neurons
in their receptive fields.

• This architecture allows the
network to concentrate on low-
level features in one layer, then
assemble them into higher-level
features in the next layer.

• Each layer is represented in 2D.

8

2. Convolutional Layer

• fh and fw are the height and
width of the receptive field.

• Zero padding: In order for a
layer to have the same height
and width as the previous layer,
it is common to add zeros
around the inputs.

9

2. Convolutional Layer

• It is also possible to connect a large
input layer to a smaller layer by
spacing out the receptive fields.

• The distance between two
consecutive receptive fields is
called the stride.

• A neuron located in row i, column j
is connected to the neurons in the
previous layer located in:
• Rows: i × sh to i × sh + fh – 1

• Cols: j × sw to j × sw + fw – 1

10

2. Convolutional Layer

• Keras supports
• No padding (default)

padding="VALID"

• Zero padding
padding="SAME"

• Example:
• Input width: 13

• Filter width: 6

• Stride: 5

11

13 / 5 = 3

2. Convolutional Layer

12

2.1 Filters

• A neuron’s weights can be
represented as a small image the
size of the receptive field, called
filters.

• When all neurons in a layer use
the same line filters, we get the
feature maps on the top.

13

2.2 Stacking Feature Maps

• In reality, each layer is 3D
composed of several feature maps
of equal sizes.

• Within one feature map, all
neurons share the same
parameters, but different feature
maps may have different
parameters.

• Once the CNN has learned to
recognize a pattern in one
location, it can recognize it in any
other location.

14

2.3 Mathematical Summary

• zi, j, k is the output of the neuron located in row i, column j in feature
map k

• fn′ is the number of feature maps in the previous layer

15

2.4 Memory Requirements

• Convolutional layers require a huge amount of RAM.

• Example: Convolutional layer with 5 × 5 filters, 200 feature maps of
size 150 × 100, with stride 1 and "same" padding. Input is RGB image
(three channels).
• Parameters = (5 × 5 × 3 + 1) × 200 = 15,200

• Size of feature maps (single precision) = 200 × 150 × 100 × 4 = 12 MB of RAM

• 1.2 GB of RAM for a mini batch of 100 instances

16

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

17

3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input image in order to
reduce the computational load, the memory usage, and the number
of parameters.

• It aggregates the inputs using max or mean.

18

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

19

4. CNN Architectures

• Stack few convolutional layers (each one generally followed by a
ReLU layer), then a pooling layer, then another few convolutional
layers, then another pooling layer, and so on. The image gets smaller
and smaller, but it also gets deeper and deeper. At the end, a dense
NN is added.

20

4.1 Example – Fashion MNIST
model = keras.models.Sequential([

keras.layers.Conv2D(64, 7, activation="relu", padding="same",
input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation="softmax")

])

21

Feature maps

Filter size

2×2 window and stride 2

4.1 Example – Fashion MNIST

model.compile(loss="sparse_categorical_crossentropy",

optimizer="nadam", metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=10,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/10 55000/55000 [==============================] - 51s 923us/sample - loss:

0.7183 - accuracy: 0.7529 - val_loss: 0.4029 - val_accuracy: 0.8510

…

Epoch 10/10

55000/55000 [==============================] - 50s 911us/sample - loss: 0.2561 -

accuracy: 0.9145 - val_loss: 0.2891 - val_accuracy: 0.9036

22

4.1 Example – Fashion MNIST

score = model.evaluate(X_test, y_test)

X_new = X_test[:10] # pretend we have new images

y_pred = model.predict(X_new)

10000/10000 [==============================] - 2s 239us/sample - loss:

0.2972 - accuracy: 0.8983

23

Can reach 92% with
more epochs

4.2 ResNet

• Residual Network (or ResNet) won the ILSVRC 2015 challenge.

• Top-5 error rate under 3.6%, using an extremely deep CNN composed
of 152 layers.

• To train such a deep network, it uses skip connections.

24

Residual Learning

4.2 ResNet

• The network can start making progress even if several layers have not
started learning yet.

25

4.2 ResNet

• ResNet is a stack of residual units.

26

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

27

5. Using Pretrained Models

• Pretrained networks are readily available from the
keras.applications package.

• Check https://github.com/keras-team/keras-applications

• You can load the ResNet-50 model, pretrained on ImageNet, with the
following line of code:
model = keras.applications.resnet50.ResNet50(weights="imagenet")

28

https://github.com/keras-team/keras-applications

5. Using Pretrained Models

Input: 224 × 224-pixel images
images_resized = tf.image.resize(images, [224, 224])

Preprocess images, should be scaled 0-255
inputs = keras.applications.resnet50.preprocess_input(

images_resized * 255)

Y_proba = model.predict(inputs)

Get top predictions out of the 1000-class probs.
top_K = keras.applications.resnet50.decode_predictions(Y_proba, top=3)

29

5. Using Pretrained Models

Print results
for image_index in range(len(images)):

print("Image #{}".format(image_index))
for class_id, name, y_proba in top_K[image_index]:

print(" {} - {:12s} {:.2f}%".format(class_id, name, y_proba * 100))
print()

Image #0
n03877845 - palace 42.87%
n02825657 - bell_cote 40.57%
n03781244 - monastery 14.56%

Image #1
n04522168 - vase 46.83%
n07930864 - cup 7.78%
n11939491 - daisy 4.87%

30

Correct Class

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

31

6. Pretrained Models for Transfer Learning

• Training a pretrained network (Xception) for a dataset from TFDS
(https://www.tensorflow.org/datasets).

• tf_flowers: 3670 images, 5 classes
Load the dataset

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers",

as_supervised=True, with_info=True)

dataset_size = info.splits["train"].num_examples # 3670

n_classes = info.features["label"].num_classes # 5

class_names = info.features["label"].names

32

https://www.tensorflow.org/datasets

6. Pretrained Models for Transfer Learning

Relooad the dataset with three splits tf.data.Dataset

test_set_raw, valid_set_raw, train_set_raw = tfds.load(

"tf_flowers", split=["train[:10%]",

"train[10%:25%]", "train[25%:]"],

as_supervised=True)

Define the preprocessing function

def preprocess(image, label):

resized_image = tf.image.resize(image, [224, 224])

final_image = keras.applications.xception.preprocess_input(
resized_image)

return final_image, label
33

6. Pretrained Models for Transfer Learning

Apply this preprocessing function to the 3 datasets
Shuffle the training set
Add batching and prefetching to all the datasets

batch_size = 32

train_set = train_set_raw.shuffle(3000).repeat()

train_set = train_set.map(preprocess).batch(

batch_size).prefetch(1)

valid_set = valid_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

test_set = test_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

34

6. Pretrained Models for Transfer Learning

Load an Xception model, pretrained on ImageNet
excluding the global avg pool. and dense o/p layers

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

Add global avg pool. layer based on model output

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

output = keras.layers.Dense(n_classes, # Add desnse o/p

activation="softmax")(avg)

model = keras.models.Model(inputs=base_model.input,

outputs=output) # Create the Keras Model

35

6. Pretrained Models for Transfer Learning

Freeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = False

Compile the model and start training

optimizer = keras.optimizers.SGD(lr=0.2, momentum=0.9,

decay=0.01) # LR=0.2 with scheudle, k=1/0.01

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=5,

validation_data=valid_set) # Tops at 75–80% acc.

36

6. Pretrained Models for Transfer Learning

Unfreeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = True

Recompile with lower LR and decay

optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9,

nesterov=True, decay=0.001)

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=40,

validation_data=valid_set) # Result: 95% acc.

37

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

38

7. Classification and Localization

• Localizing an object in a picture can be expressed as a regression task.

• Predict the horizontal and vertical coordinates of the object’s center and
its height and width.

39

Common metric:
the Intersection
over Union (IoU)

7. Classification and Localization

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

class_output = keras.layers.Dense(n_classes, activation="softmax")(avg)

loc_output = keras.layers.Dense(4)(avg)

model = keras.Model(inputs=base_model.input,

outputs=[class_output, loc_output])

model.compile(loss=["sparse_categorical_crossentropy "mse"],

loss_weights=[0.8, 0.2],

optimizer=optimizer, metrics=["accuracy"])

40

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

41

8. Object detection

• The task of classifying and localizing multiple objects in an image.

• A slow approach is use a CNN trained to classify and locate a single
object, then slide it across the image.

42

8.1 Fully Convolutional Networks

• FCN has also a convolution
layer at the output with valid
padding.

• FCN can process images of any
size.

• Example:
• Train the CNN for classification

and localization on small images,
10 outputs.

• For larger image, it output 8 × 8
grid where each cell contains 10
numbers.

43

8.2 You Only Look Once (YOLO)

• YOLO is an extremely fast and accurate object detection architecture.
1. Resizes the input image to 448 × 448

2. Runs a single convolutional network on the image

3. Thresholds the resulting detections by the model’s confidence.

44

8.2 You Only Look Once (YOLO)

• Models detection as a regression problem. It divides the image into
an S × S grid.

45

• For each grid cell
predicts B bounding
boxes, confidence for
those boxes, and C
class probabilities.

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

46

9. Semantic Segmentation

• Each pixel is classified according to the class of the object it belongs
to.

• Can use FCN followed by up sampling layers.

47

Exercises

14.9. Build your own CNN from scratch and try to achieve the highest
possible accuracy on MNIST.

14.10. Use transfer learning for large image classification, going
through these steps:
a) Create a training set containing at least 100 images per class. For example,

you could classify your own pictures based on the location (beach,
mountain, city, etc.), or alternatively you can use an existing dataset (e.g.,
from TensorFlow Datasets).

b) Split it into a training set, a validation set, and a test set.
c) Build the input pipeline, including the appropriate preprocessing

operations, and optionally add data augmentation.
d) Fine-tune a pretrained model on this dataset.

48

Summary

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

49

