
Deep Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 11: Training Deep Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
3

1. Introduction

• Deep neural networks can solve complex problems and provide end-
to-end solutions.

• When you train a deep network, you may face the following
problems:
• Vanishing or exploding gradients: The gradients grow smaller and smaller, or

larger and larger.

• Not enough data

• Long training time

• Overfitting

4

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
5

2. Vanishing/Exploding Gradients Problems

• Vanishing Problem: In the backpropagation algorithm, gradients
often get smaller and smaller as the algorithm progresses down
to the lower layers.
• Lower layers’ connection are left unchanged.

• Exploding Problem: the gradients can grow bigger and bigger.
• Layers get very large weight updates and the algorithm diverges.

• Main Reasons: Using activation functions
(logistic sigmoid) and weight initialization
(normal distribution with 0-mean and
1-standard deviation).

6

2.1 Glorot and He Initialization

• Glorot and Bengio: In order for the signal not to die out, nor to
explode and saturate, the variance of the outputs of each layer
should be equal to the variance of its inputs.

• Solution: the connection weights of each layer must be initialized
randomly as follows:

7

2.1 Glorot and He Initialization

• Recommended initialization parameters for each type of activation
function.

• For the uniform distribution, use

• Keras uses Glorot initialization with a uniform distribution.

8

2.1 Glorot and He Initialization

• To change it to He initialization:
keras.layers.Dense(10, activation="relu",

kernel_initializer="he_normal") # Or "he_uniform"

• He initialization with a uniform distribution but based on fanavg:
he_avg_init = keras.initializers.VarianceScaling(scale=2.,

mode='fan_avg', distribution='uniform')

keras.layers.Dense(10, activation="sigmoid",

kernel_initializer=he_avg_init)

9

2.2 Nonsaturating Activation Functions

• Step does not work with the
back propagation algorithm.

• ReLU is better than sigmoid
because it does not saturate for
positive values and is fast.

• Dying ReLUs: A neuron dies
when its input is negative for all
training instances.

10

2.2 Nonsaturating Activation Functions

• Leaky ReLU performs better
than ReLU.

• α between 0.01 and 0.3

11

model = keras.models.Sequential([
…
keras.layers.Dense(10, kernel_initializer="he_normal"),
keras.layers.LeakyReLU(alpha=0.2), # added as a layer
…

])

2.2 Nonsaturating Activation Functions

• Exponential linear unit (ELU)
also performs better than ReLU
but is slower.

• Scaled ELU (SELU) performs best
with dense and CNN, but must
scale inputs and use
lecun_normal.

12

layer = keras.layers.Dense(10, activation="selu",
kernel_initializer="lecun_normal")

2.2 Nonsaturating Activation Functions

• Summary:
• SELU > ELU > leaky ReLU > ReLU > tanh > logistic

• If you cannot use SELU, use ELU.

• For fast response, use leaky ReLU or ReLU.

13

2.3 Batch Normalization

• The techniques in §2.1 and §2.2 can significantly reduce the
vanishing/exploding gradients problems at the beginning of training,
but don’t guarantee that they won’t come back during training.

• Batch Normalization (BN) zero-centers and normalizes each layer
input using statistics from the mini batch (> 30).

• Other benefits: Works even without §2.1 and §2.2, allows using
larger LR, and have regularization effect.

14

2.3 Batch Normalization

• Implementing batch normalization with Keras is easy.

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.BatchNormalization(),
keras.layers.Dense(300, activation="elu",
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(100, activation="elu",
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(10, activation="softmax")

])

15

2.4 Gradient Clipping

• Mitigates the exploding gradients problem by clipping the gradients
during backpropagation so that they never exceed some threshold.

• Use it when you observe that the gradients are exploding during
training. You can track the size of the gradients using TensorBoard.

optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

16

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
17

3. Reusing Pretrained Layers

• Transfer Learning: Using
one NN developed for a
certain task to solve
another task.

• Useful to shorten training
time or with small
datasets.

18

Transfer Learning with Keras

Load the ready model

model_A = keras.models.load_model("my_model_A.h5")

Create a new model using all but the last layer

model_B_on_A = keras.models.Sequential(model_A.layers[:-1])

model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))

Freeze loaded layers then compile

for layer in model_B_on_A.layers[:-1]:

layer.trainable = False

model_B_on_A.compile(loss="binary_crossentropy",

optimizer="sgd", metrics=["accuracy"])

19

Transfer Learning with Keras

Train the model for a few epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,

validation_data=(X_valid_B, y_valid_B))

Unreeze loaded layers

for layer in model_B_on_A.layers[:-1]:

layer.trainable = True

Compile with small learning rate (defalut = 1e-2)

optimizer = keras.optimizers.SGD(lr=1e-4)

model_B_on_A.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

20

Transfer Learning with Keras

Train the model for more epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,

validation_data=(X_valid_B, y_valid_B))

21

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
22

4. Faster Optimizers

• The SGD optimizer can be made faster using momentum
optimization

23

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

β

4. Faster Optimizers

• Nesterov momentum optimization measures the gradient of the cost
function not at the local position θ but slightly ahead in the direction
of the momentum, at θ + βm

24

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9,
nesterov=True)

4. Faster Optimizers

• The adaptive optimizers such as AdaGrad, RMSProp, Adam, and
Nadam scale down the gradient vector along the steepest
dimensions.

25

optimizer = keras.optimizers.RMSprop()
optimizer = keras.optimizers.Adam()

4. Faster Optimizers

• RMSProp, Adam and Nadam often converge fast. But they can give
poor generalization.

• Solution: Use Nesterov accelerated gradient.

26

Class Speed Quality

SGD * ***

SGD with momentum, Nestrov ** ***

Adagrad *** *

RMSProp, Adam, Nadam, AdaMax *** ** or ***

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
27

5. Avoiding Overfitting

• Deep neural networks typically have many parameters, giving them
ability to fit a huge variety of complex datasets.

• Useful regularization techniques:
• Early stopping

• Batch normalization

• ℓ1 and ℓ2 regularization

• Dropout

28

5.1 ℓ1 and ℓ2 Regularization

• Constrain a neural network’s connection weights.

• ℓ1:

• ℓ2:

layer = keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.l1(0.01))

The other regularization functions:

keras.regularizers.l2(0.01)

keras.regularizers.l1_l2(l1=0.01, l2=0.01)

29

5.2 Dropout

• Popular technique to improve accuracy.

• At every training step, every neuron (excluding the output neurons)
has a probability p of being temporarily dropped out.

30

5.2 Dropout

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(300, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(10, activation="softmax")

])

31

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
32

6. Summary

• Recommended default DNN configuration

33

Hyperparameter Default value

Kernel initializer He initialization

Activation function ELU

Normalization None if shallow; Batch Norm if
deep

Regularization Early stopping (+ℓ2 reg. if needed)

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

6. Summary

• For a simple stack of dense or CNN layers.

34

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

7. Exercise
11.8. Practice training a deep neural network on the CIFAR10 image dataset:
a) Build a DNN with 20 hidden layers of 100 neurons each (that’s too many, but it’s the point of

this exercise). Use He initialization and the ELU activation function.
b) Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You

can load it with keras.datasets.cifar10.load_ data(). The dataset is composed of 60,000 32 ×
32–pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you’ll need
a softmax output layer with 10 neurons. Remember to search for the right learning rate each
time you change the model’s architecture or hyperparameters.

c) Now try adding Batch Normalization and compare the learning curves: Is it converging faster
than before? Does it produce a better model? How does it affect training speed?

d) Try replacing Batch Normalization with SELU, and make the necessary adjustments to ensure
the network self-normalizes (i.e., standardize the input features, use LeCun normal
initialization, make sure the DNN contains only a sequence of dense layers, etc.).

e) Try regularizing the model with alpha dropout. Then, without retraining your model, see if
you can achieve better accuracy using MC Dropout.

f) Retrain your model using 1cycle scheduling and see if it improves training speed and model
accuracy.

35

