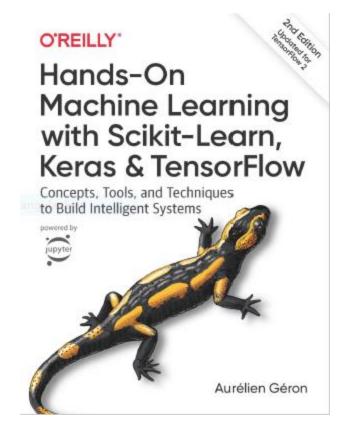
Training Models and Regression

Prof. Gheith Abandah

Reference

Chapter 4: Training Models



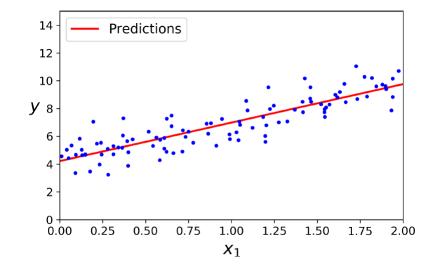
- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, O'Reilly, 2nd Edition, 2019
 - Material: https://github.com/ageron/handson-ml2

- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

Linear Regression

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- \hat{y} is the predicted value.
- *n* is the number of features.
- x_i is the ith feature value.



• θ_j is the jth model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

$$\hat{y} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$$

Analytical Solution

The Root Mean Square Error (RMSE) is used as cost function.

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

• Minimizing this cost gives the following solution (normal function):

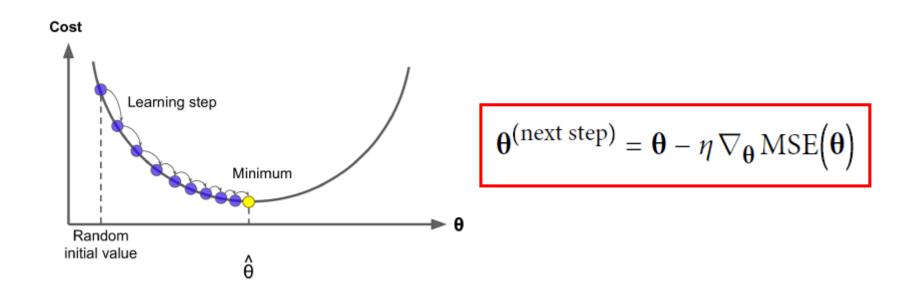
$$\widehat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \quad \mathbf{X}^T \quad \mathbf{y} \quad \leftarrow \quad \text{Complexity } \mathcal{O}(mn^2)$$

- $\widehat{\boldsymbol{\theta}}$ is the value of $\boldsymbol{\theta}$ that minimizes the cost function.
- **y** is the vector of target values containing $y^{(1)}$ to $y^{(m)}$.

- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

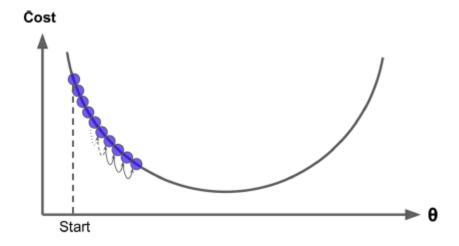
Gradient Descent

- Generic optimization algorithm capable of finding optimal solutions to a wide range of problems.
- Tweaks parameters iteratively in order to minimize a cost function.

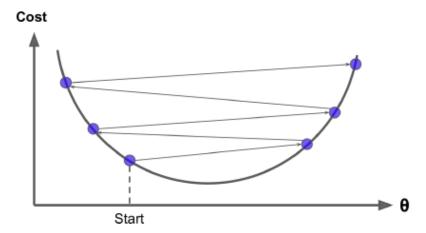


Learning Rate

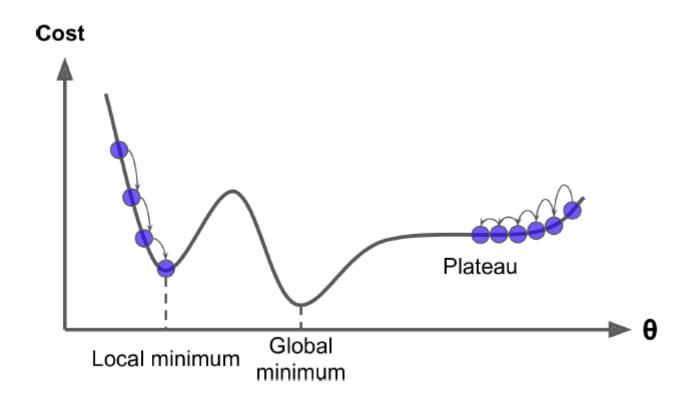
Too Small



Too Large

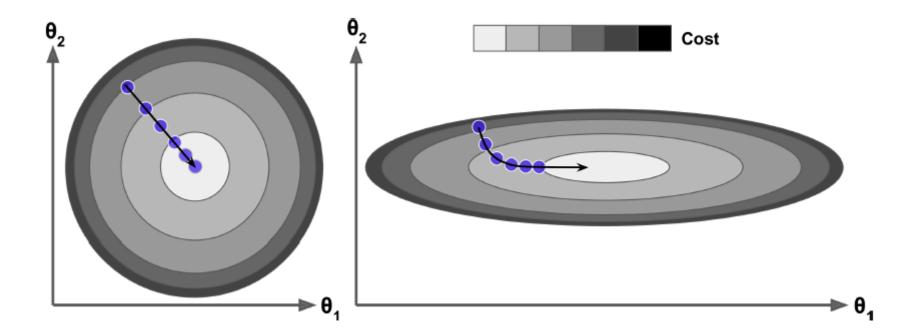


Gradient Descent Pitfalls



Feature Scaling

- Ensure that all features have a similar scale (e.g., using Scikit-Learn's StandardScaler class).
- Gradient Descent with and without feature scaling.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

Batch Gradient Descent

• Partial derivatives of the cost function in θ_i

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Gradient vector of the cost function

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

$$\vdots$$

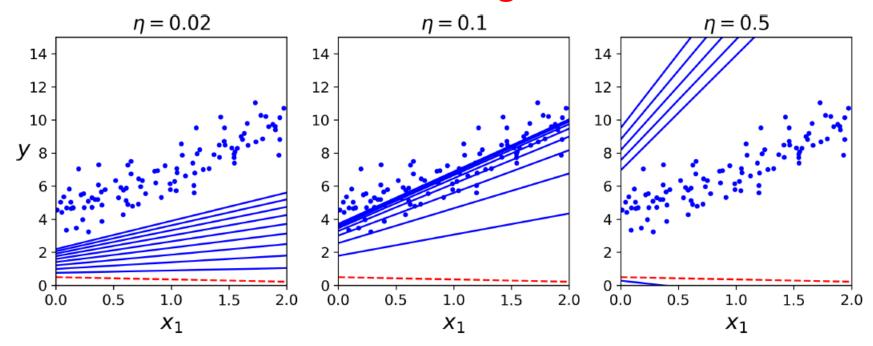
$$\boldsymbol{\theta}^{(\text{next step})} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta})$$

Batch Gradient Descent

Gradient Descent step

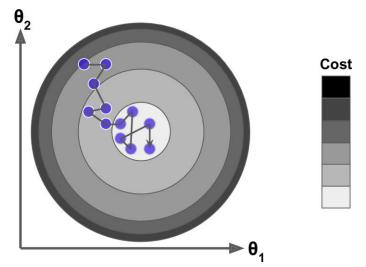
$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} MSE(\theta)$$

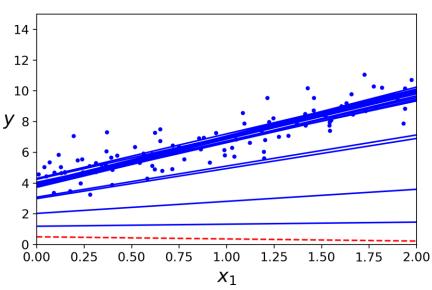
Gradient Descent with various learning rates



Stochastic Gradient Descent

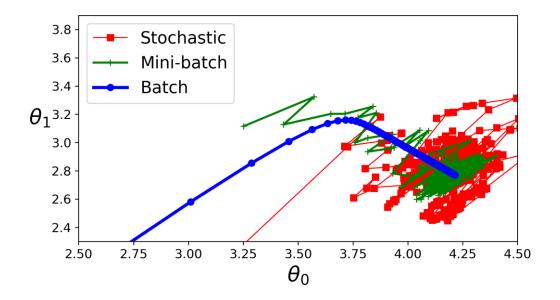
- SGD picks a random instance in the training set at every step and computes the gradients.
- SGD is **faster** when the training set is large.
- Is bouncy
- Eventually gives good solution
- Can escape local minima





Mini-batch Gradient Descent

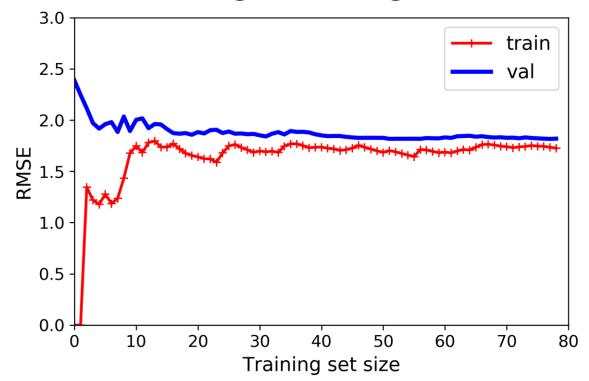
- Computes the gradients on small random sets of instances called mini batches.
- Benefits from hardware accelerators (e.g., GPU).
- Less bouncy, better solution, escapes some local minima



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

Learning Curves

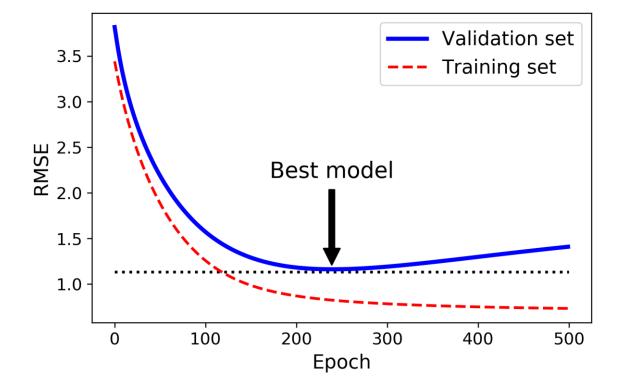
- The accuracy on the validation set generally increases as the training set size increases.
- Overfitting decreases with larger training set.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

Early Stopping

- Stop training when the validation error reaches a minimum.
- Need to save the best model.



- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises

Exercises

- 1. What Linear Regression training algorithm can you use if you have a training set with millions of features?
- 2. Suppose the features in your training set have very different scales. What algorithms might suffer from this, and how? What can you do about it?
- 3. Do all Gradient Descent algorithms lead to the same model provided you let them run long enough?

Summary

- 1. Linear Regression
- 2. Gradient Descent
- 3. Gradient Descent Variants
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
- 4. Learning Curves
- 5. Early Stopping
- 6. Exercises