Classification

Prof. Gheith Abandah

OREILLY"

Hands-On
Reference Machine Learning

with Scikit-Learn,

Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

A

~>°\'(\
#d:o‘?b Su

58
C

* Chapter 3: Classification

Aurélien Géron

* Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019

* Material: https://github.com/ageron/handson-mi2

https://github.com/ageron/handson-ml2

Introduction

* YouTube Video: Machine Learning - Supervised Learning
Classification from Cognitive Class

https://youtu.be/Lf2bCQlktTo

https://youtu.be/Lf2bCQIktTo

Outline

MNIST dataset

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

A o

Exercise

1. MNIST Dataset

 MNIST is a set of 70,000 small
images of handwritten digits.

e Available from mldata.org

* Scikit-Learn provides
download functions.

NN T4 WOUNO
SN N4 >N DL~ 0
MRS IO WA VE Y e
NN NGFEROWP~Q
NRHINNWEARPON—-O
Do ecnLVWNw—-0
DY LPUNO
VYN s\ LM —0O
D& TWVWHLWwUNDO
NN GcRAWL -

http://mldata.org/

1.1. Get the Data

>>> from sklearn.datasets import fetch_openml

>>> mnist = fetch _openml('mnist 784", version=1)

>>> mnist.keys()

dict_keys(['data’, 'target', 'feature_names', 'DESCR', 'details’,
'categories', 'url'])

1.2. Extract Features and Labels

>>> X, y = mnist["data"], mnist["target"]
>>> X.shape

(70000, 784)

>>> y.shape

(70000,)

There are 70,000 images, and each image has 784 features.
This is because each image is 28x28 pixels, and each feature simply
represents one pixel’s intensity, from 0 (white) to 255 (black).

1.3. Examine One Image

import as
import as

some_digit = X[0]
some_digit_image = some_digit.reshape(28, 28)

plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest")
plt.axis("off")
plt.show()

>>> y[0]
rSr e_

1.4. Split the Data

 The MNIST dataset is actually already split into a training set (the first
60,000 images) and a test set (the last 10,000 images).
* The training set is already shuffled.

X_train, X_test, y _train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

Outline

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

o Uk W

Exercise

2. Training a Binary Classifier

* A binary classifier can classify two classes.

* For example, classifier for the number 5, capable of distinguishing

between two classes, 5 and not-5.

y train 5 = (y_train == 5) €&

y test 5 = (y _test == 5)

True for all 5s, False for all
other digits.

from import SGDClassifier

sgd_clf = SGDClassifi_er(random_state=42)\ Stochastic Gradient

sgd_clf.fit(X_train, y_train_5)

>>> sgd_clf.predict([some_digit])
array([True])

Descent (SGD) classifier

11

Outline

Performance measures
Multiclass classification
Multilabel classification

o U kW

Exercise

3. Performance Measures

* Accuracy: Ratio of correct predictions
e Confusion matrix

* Precision and recall

* F1 Score

* Precision/recall tradeoff

13

3.1. Accuracy

y pred = clone_clf.predict(X test fold)
n_correct = sum(y_pred == y test fold)
print(n_correct / len(y_pred))

\ Example how to find the

accuracy.

>>> from sklearn.model _selection import cross_val _score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.96355, 0.93795, 0.95615])

Using the cross_val score()
function to find the accuracy on
three folds

14

3.1. Accuracy

* Use cross _val predict() to predict the targets of the entire training
set.

from import cross_val predict

y _train_pred = cross_val predict(sgd clf, X train, y train_5, cv=3)

15

3.2. Confusion Matrix srecision — — L7
TP+ FP
Predicted
@ Negative Positive
&F 4
Negative 3 6 R
Actual ;) Precision
.. - (e.g., 3outof 4)
Positive b g - 5 5. 5
TP h Recall iﬂ

recall =

I'P+ FN

(e.qg., 3 out of 5)

16

3.2. Confusion Matrix

* Scikit Learn has a function for finding the confusion matrix.

>>> from import confusion_matrix
>>> confusion _matrix(y train_5, y train_pred)
array([[53057, 1522],

[1325, 4096]])
* The first row is for the non-5s (the negative class):

e 53,057 correctly classified (true negatives)
* 1,522 wrongly classified (false positives)

* The second row is for the 5s (the positive class):
* 1,325 wrongly classified (false negatives)
* 4,096 correctly classified (true positives)

17

3.3. Precision and Recall

Precision Recall

recision = P recall = rr
PIeCISION = =5 Fp ~ TP+ FN

>>> from sklearn.metrics import precision_score, recall_score

>>> precision_score(y_train_5, y train_pred) # == 4096 / (4096 + 1522)
0.7290850836596654

>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)
0.7555801512636044

The precision and recall are smaller than the accuracy.
Why?

18

3.4. F1 Score

* The F1 Score combines the precision and recall in one metric
(harmonic mean).

Fo_ 2 _ 5, precision x recall TP
1 1 1 recision + recall FN + FP
p TP +

precision T recall 2

>>> from sklearn.metrics import f1_score
>>> f1 score(y_train_5, y_train_pred)
0.7420962043663375

3.5. Precision/Recall Tradeoff

* Increase the decision threshold to improve the precision when it is
bad to have FP.

* Decrease the decision threshold to improve the recall when it is
important not to miss FN.

Precision: 6/8 = 75% 4/5 = 80% 3/3 =100%
Recall: 6/6 = 100% 416 = 67% 3/6 = 50%
+17 5 3 S5 ¢ |5 9595
J’ S |5
P Score
Negative predictions A .-+7 Positive predictions

. e 2T e

Various thresholds

20

3.5. Precision/Recall Tradeoff

* The function cross _val predict() can return decision scores
instead of predictions.

y _scores = cross_val _predict(sgd clf, X _train, y_train_5, cv=3,
method="decision_ function")

* These scores can be used to compute precision and recall for all
possible thresholds using the precision recall curve() function.

from sklearn.metrics import precision_recall _curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

21

3.5. Precision/Recall Tradeoff

10 — "_—___.,...4-———._
0.8 - :
0.6 - .
Precision
/
... /U S — Recall
0.4 !
7
/
V4
//
0.2 1 e
0.0 T T T : T
—40000 —20000 0 20000
Threshold

22

3.5. Precision/Recall Tradeoff

* For larger precision, increase the threshold, and decrease it for
larger recall.

* Example: To get 90% precision.
The first threshold with precision = 90%

threshold 90 precision = thresholds|np.argmax(precisions >= 0.90)] # ~7816

y_train_pred 90 = (y_scores >= threshold 90 precision)

>>> precision_score(y_train_5, y _train_pred 90)
0.9000380083618396 True when score

>>> recall_score(y_train_5, y_train_pred _90) > new threshold

0.4368197749492714

23

Outline

4. Multiclass classification
5. Multilabel classification
6. Exercise

4. Multiclass Classification

* Multiclass classifiers can distinguish between more than two classes.

* Some algorithms (such as Random Forest classifiers or Naive Bayes
classifiers) are capable of handling multiple classes directly.

e Others (such as Support Vector Machine classifiers or Linear
classifiers) are strictly binary classifiers.

* There are two main strategies to perform multiclass classification
using multiple binary classifiers.

25

4.1. One-versus-All (OvA) Strategy

* For example, classify the digit images into 10 classes (from O to 9) to
train 10 binary classifiers, one for each digit (a O-detector, a 1-
detector, a 2-detector, and so on).

* Then to classify an image, get the decision score from each classifier
for that image and select the class whose classifier outputs the
highest score.

4.2. One-versus-One (OvO) Strategy

* Train a binary classifier for every pair of digits.

* If there are N classes, need N x (N — 1) / 2 classifiers. For MNIST, need
45 classifiers.

* To classify an image, run the image through all 45 classifiers and see
which class wins the most duels.

* The main advantage of OvO is that each classifier only needs to be
trained on a subset of the training set.

* OvO is preferred for algorithms (such as Support Vector Machine)
that scale poorly with the size of the training set.

27

4.3. Scikit Learn Support of Multiclass
Classification

* Scikit-Learn detects when you try to use a binary classification

algorithm for a multiclass classification task, and it automatically runs
OVA (except for SVM classifiers for which it uses OvO).

>>> sgd_clf.fit(X_train, y _train) # v train, not vy train 5
>>> sgd _clf.predict([some digit])
array([5], dtype=uint8)

from

import RandomForestClassifier

x Better
forest_clf = RandomForestClassifier(random_state=42) N classifier than
>>> forest _clf.fit(X _train, y _train)

, oS SGD
>>> forest_clf.predict([some_digit])
array(igl, dtype=uint8)

28

4.3. Scikit Learn Support of Multiclass
Classification

* Note that the multiclass task is harder than the binary task.
* Binary task

>>> from import cross _val_score
>>> cross_val_score(sgd clf, X train, y_train_5, cv=3, scoring="accuracy")
array([0.96355, 0.93795, 0.95615])

e Multiclass task

>>> cross_val_score(sgd clf, X _ train, y_train, cv=3, scoring="accuracy")
array([0.8489802 , 0.87129356, 0.86988048])

29

4.4. Error Analysis

>>> y train_pred = cross_val predict(sqgd clf, X train_scaled, y train, cv=3)
confusion matrix(y _train, y _train_pred)

>>> conf_mx

>>> conf_mx
array([[5578,

[

| I e B e B B s I ey I ey B |

o,
28,
23,
11,
26,
31,
20,
17,
24,

0,
6410,
27,
18,
14,
16,
17,
10,
64,
18,

22,
35,
5232,
115,
45,
31,
45,
53,
47,
29,

7, 8, 45, 35,
26, 4, 44, 4,
100, 74, 27, 68,
5254, 2, 209, 26,
12, 5219, 11, 33,
173, 54, 4484, 76,
2, 42, 98, 5556,
27, 50, 13, 3,
91, 3, 125, 24,
67, 116, 39, 1,

5,

8,
37,
38,
26,
14,
3,
5696,
11,
174,

Many images are misclassified as 8s.

//;7

222,
198,
354,
373,
299,
482,
123,
173,
5421,
329,

11,
13],
11],
731,

172],
651,
11,
220],
48],
5152]1)

30

Outline

5. Multilabel classification
6. Exercise

5. Multilabel Classification

* Classifiers that output multiple classes for each instance.

y _train_large = (y_train >= 7)
y train_odd = (y _train % 2 == 1)
y multilabel = np.c_[y _train_large, vy train_odd]

knn_clf = KNeighborsClassifier() €— Popular algorithm
knn_clf.fit(X _train, y _multilabel)

>>> knn_clf.predict([some_digit])
array([[False, True]], dtype=bool)

32

Summary

MNIST dataset

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

A o

Exercise

Exercise

* Try to build a classifier for the MINIST dataset that achieves over 97%
accuracy on the test set. Hint: the KNeighborsClassifier works quite
well for this task; you just need to find good hyperparameter values
(try a grid search on the weights and n_neighbors hyperparameters).

34

