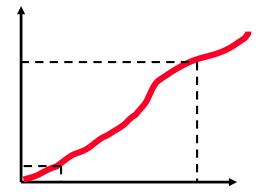
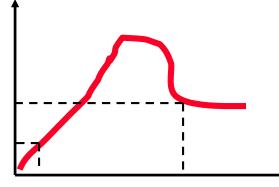
2^k Factorial Designs


Adapted by Prof. Gheith Abandah



- □ 2² Factorial Designs
- Model
- Computation of Effects
- **Gign** Table Method
- □ Allocation of Variation
- General 2^k Factorial Designs

2^k Factorial Designs

- □ k factors, each at two levels.
- □ Easy to analyze.
- □ Helps in sorting out impact of factors.
- Good at the beginning of a study.
- □ Valid only if the effect is unidirectional.
 - E.g., memory size, the number of disk drives

2² Factorial Designs

□ Two factors, each at two levels.

Performance in MIPS				
Cache	Memory Size			
Size	4M Bytes	16M Bytes		
1K	15	45		
2K	25	75		

$$x_A = \begin{vmatrix} -1 & \text{if 4M bytes memory} \\ 1 & \text{if 16M bytes memory} \\ x_B = \begin{vmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{vmatrix}$$

Model

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$

Observations:

 $15 = q_0 - q_A - q_B + q_{AB}$ $45 = q_0 + q_A - q_B - q_{AB}$ $25 = q_0 - q_A + q_B - q_{AB}$ $75 = q_0 + q_A + q_B + q_{AB}$

Solution:

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

Interpretation: Mean performance = 40 MIPS Effect of memory = 20 MIPS; Effect of cache = 10 MIPS Interaction between memory and cache = 5 MIPS.

Computation of Effects

Experiment	Α	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$
$$y_1 = q_0 - q_A - q_B + q_{AB}$$
$$y_2 = q_0 + q_A - q_B - q_{AB}$$
$$y_3 = q_0 - q_A + q_B - q_{AB}$$
$$y_4 = q_0 + q_A + q_B + q_{AB}$$

Computation of Effects (Cont)

Solution:

$$q_{0} = \frac{1}{4}(y_{1} + y_{2} + y_{3} + y_{4})$$

$$q_{A} = \frac{1}{4}(-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4}(-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4}(y_{1} - y_{2} - y_{3} + y_{4})$$

Sign Table Method

Ι	А	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	$\mathrm{Total}/4$

©2006 Raj Jain www.rajjain.com

Allocation of Variation

□ Importance of a factor = proportion of the *variation* explained

Sample Variance of
$$y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \bar{y})^2}{2^2 - 1}$$

Total Variation of
$$y = SST = \sum_{i=1}^{\infty} (y_i - \bar{y})^2$$

\Box For a 2² design:

$$SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2 = SSA + SSB + SSAB$$

- □ Variation due to $A = SSA = 2^2 q_A^2$
- □ Variation due to $B = SSB = 2^2 q_B^2$
- □ Variation due to interaction = SSAB = $2^2 q_{AB}^2$
- □ Fraction explained by $A = \frac{SSA}{SST}$ Variation ≠ Variance

©2006 Raj Jain www.rajjain.com

Example 17.2

□ Memory-cache study:

$$\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$

Total Variation = $\sum_{i=1}^{4} (y_i - \bar{y})^2$
= $(25^2 + 15^2 + 15^2 + 35^2)$
= 2100
= $4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$

□ Total variation= 2100

Variation due to Memory = 1600 (76%) Variation due to cache = 400 (19%) Variation due to interaction = 100 (5%)

General 2^k Factorial Designs

- □ k factors at two levels each.
 - 2^k experiments.
 - 2^k effects: k main effects

$$\left(\begin{array}{c}k\\2\\k\\3\end{array}\right)$$
two factor interactions
$$\left(\begin{array}{c}k\\k\\3\end{array}\right)$$
three factor interactions..

2^k Design Example

□ Three factors in designing a machine:

- Cache size
- > Memory size
- > Number of processors

	Factor	Level -1	Level 1
А	Memory Size	4MB	$16\mathrm{MB}$
В	Cache Size	1kB	$2\mathrm{kB}$
\mathbf{C}	Number of Processors	1	2

2^k Design Example (cont)

Cac	ehe		4M Bytes			16M Bytes		
Size)	1	Proc	2 I	roc	1 Proc 2		2 Proc
1K	Byte		14		46		22	58
2K	Byte		10		50		34	86
Ι	A	В	С	AB	AC	BC	ABC	C y
1	-1	-1	-1	1	1	1	-	1 14
1	1	-1	-1	-1	-1	1		1 22
1	-1	1	-1	-1	1	-1	-	1 10
1	1	1	-1	1	-1	-1	-	1 34
1	-1	-1	1	1	-1	-1		1 46
1	1	-1	1	-1	1	-1	-	1 58
1	-1	1	1	-1	-1	1	-	1 50
1	1	1	1	1	1	1		1 86
320	80	40	160	40	16	24	(9 Total
_40	10	5	20	5	2	3	-	1 $Total/8$

©2006 Raj Jain www.rajjain.com

Analysis of 2^k Design

SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

= $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$

- = 800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512
- = 18% + 4% + 71% + 4% + 1% + 2% + 0%

= 100%

□ Number of Processors (C) is the most important factor.

2^k design allows k factors to be studied at two levels each
 Can compute main effects and all multi-factors interactions
 Easy computation using sign table method
 Easy allocation of variation using squares of effects