Introduction to Experimental Design

Adapted by Prof. Gheith Abandah

U What is experimental design?

- **Terminology**
- **Common mistakes**
- □ Sample designs

Experimental Design and Analysis

How to:

Design a proper set of experiments for measurement or simulation.

Develop a model that best describes the data obtained.

Estimate the contribution of each alternative to the performance.

Example

Personal workstation design

- 1. Processor: 68000, Z80, or 8086.
- 2. Memory size: 512K, 2M, or 8M bytes
- 3. Number of Disks: One, two, three, or four
- 4. Workload: Secretarial, managerial, or scientific.
- 5. User education: High school, college, or post-graduate level.

Five **Factors** at 3x3x4x3x3 **levels**

Terminology

- **Response Variable**: Outcome.
 - E.g., throughput, response time
- **Factors**: Variables that affect the response variable.
 - E.g., CPU type, memory size, workload used.
 - Also called predictor variables or predictors.
- □ Levels: The values that a factor can assume, E.g., the CPU type has three levels: 68000, 8080, or Z80.
 - Also called **treatment**.
- Primary Factors: The factors whose effects need to be quantified.
 E.g., CPU type and memory size only.

Terminology (Cont)

- □ Secondary Factors: Factors whose impact need not be quantified.
 - E.g., the workloads.
- **Replication**: Repetition of all or some experiments.
- □ **Design**: The number of experiments, the factor level and number of replications for each experiment.
 - E.g., Full Factorial Design with 5 replications: $3 \times 3 \times 4 \times 3 \times 3$ or 324 experiments, each repeated five times.

Terminology (Cont)

 \Box Interaction \Rightarrow Effect of one factor depends upon the level of the other.

Table 1: Noninteracting Factors

	A_1	A_2
B_1	3	5
B_2	6	8

 Table 2: Interacting Factors

	A_1	A_2
B_1	3	5
B_2	6	9

©2006 Raj Jain www.rajjain.com

Types of Experimental Designs

□ **Simple Designs**: Vary one factor at a time

of Experiments =
$$1 + \sum_{i=1}^{k} (n_i - 1)$$

k

- Not statistically efficient.
- > Wrong conclusions if the factors have interaction.
- > Not recommended.

□ Full Factorial Design: All combinations.

of Experiments = $\prod_{i=1}^{i} n_i$

- > Can find the effect of all factors.
- > Too much time and money.
- ▹ May try 2^k design first.

Types of Experimental Designs (Cont)

□ Fractional Factorial Designs: Less than Full Factorial

- > Save time and expense.
- > Less information.
- > May not get all interactions.
- > Not a problem if negligible interactions

A Sample Fractional Factorial Design

Workstation Design: (3 CPUs)(3 Memory levels)(3 workloads)(3 levels) = 81 experiments

Experiment	CPU	Memory	Workload	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	$8\mathrm{M}$	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	$8\mathrm{M}$	Managerial	Post-graduate
7	8086	512K	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	$8\mathrm{M}$	Scientific	High School

- Goal of proper experimental design is to get the maximum information with minimum number of experiments
- □ Factors, levels, full-factorial designs