Comparing Systems Using Sample Data

Adapted by Prof. Gheith Abandah

©2006 Raj Jain www.rajjain.com

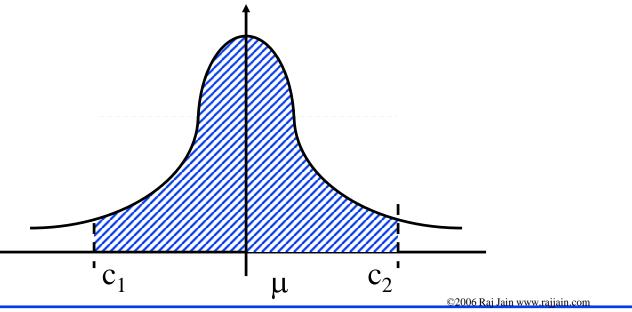
Sample Versus Population
Confidence Interval for The Mean
Approximate Visual Test
Sample Size for Determining Mean

Sample Versus Population

 \square Generate several million random numbers with mean μ and standard deviation σ

Draw a sample of *n* observations

□ Sample mean \neq population mean: $\bar{x} \neq \mu$


□ Parameters: population characteristics = Unknown = Greek (μ and σ)

□ Statistics: Sample estimates = Random = English (\bar{x} and s)

Confidence Interval for The Mean

k samples ⇒ k Sample means
 ⇒ Can't get a single estimate of μ
 ⇒ Use bounds c₁ and c₂:
 Probability{c₁ ≤ μ ≤ c₂} = 1- α

- □ Confidence interval: $[(c_1, c_2)]$
- \Box Significance level: α
- **Confidence level:** $100(1-\alpha)$
- □ Confidence coefficient: $1-\alpha$

Determining Confidence Interval

- ❑ Use 5-percentile and 95-percentile of the sample means to get 90% Confidence interval ⇒ Need many samples.
- Central limit theorem: Sample mean of independent and identically distributed observations:

 $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$

Where μ = population mean, σ = population standard deviation

- Standard Error: Standard deviation of the sample mean $= \sigma/\sqrt{n}$
- \square 100(1- α)% confidence interval for μ :

$$(\bar{x} - z_{1-\alpha/2}s/\sqrt{n}, \bar{x} + z_{1-\alpha/2}s/\sqrt{n})$$

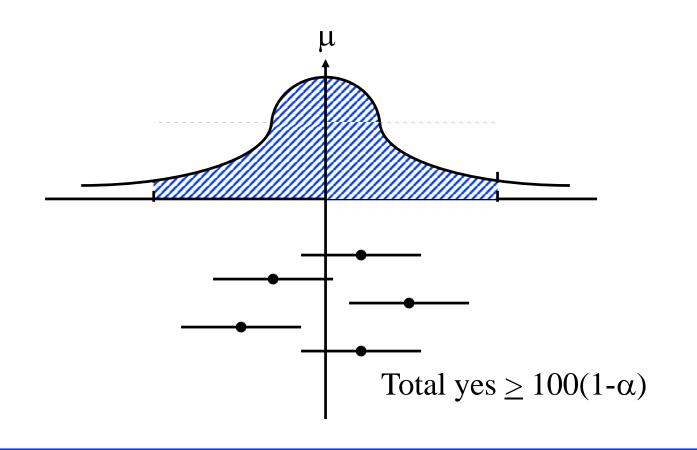
 $z_{1-\alpha/2} = (1-\alpha/2)$ -quantile of N(0,1)

 $-Z_{1-\alpha/2}$

e A.		ILES C		111.1.						
le A.			OF THE	UNIT	NORM	AL D	STRIB	UTION	1	
val at	a 1'-ta									
al at	2 lists	$z_p = 0.0$	a giver	p. ro	r exam	ple, fo	r a two	-sided	confide	nce in
	95%, 0	t = 0.0	and p	= 1 -	$\alpha/2 =$	0.975.	The ent	ry in th	le row	labeled
7 and	colum	n label	ed 0.00	5 gives	$z_p = 1$.960.				labeled
					-					
				1		Area	= <i>p</i>			
						Ň				
			-			K				
							-			
						zp				
BLE A	.2 Qu	antiles	of the U	Jnit No	rmal Di	stributi	on			
р	0.00	0.01	0.02	0.03	0.04	0.05		0.07	0.00	
0.5	0.000	0.025	0.050				0.06	0.07	0.08	0.09
0.6	0.253	0.025	0.050	0.075 0.332	0.100	0.126	0.151	0.176	0.202	0.228
0.7	0.524	0.553	0.583	0.552	0.358	0.385	0.412	0.440	0.468	0.496
0.8	0.842	0.878	0.915	0.954	0.043	0.674 1.036	0.706	0.739	0.772	0.806
				0.004	0.334	1.030	1.080	1.126	1.175	1.227
р	0.000	0.001	0.002	0.000			P.C.			
		0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.90	1.282	1.287	1.293	1.299	1.305	1.311	1.317	1.323	1.329	
0.91	1.341	1.347	1.353	1.359	1.366	1.372	1.379	1.323	1.329	1.335
0.92	1.405	1.412	1.419	1.426	1.433	1.440	1.447	1.454	1.392	1.398 1.468
0.93	1.476	1.483	1.491	1.499	1.506	1.514	1.522	1.530	1.538	1.400
0.95	1.555	1.563	1.572	1.580	1.589	1.598	1.607	1.616	1.626	1.635
0.96	1.751	1.655	1.665	1.675	1.685	1.695	1.706	1.717	1.728	1.739
0.97	1.881	1.762	1.774	1.787	1.799	1.812	1.825	1.838	1.852	1.866
0.98	2.054	1.896	1.911	1.927	1.943	1.960	1.977	1.995	2.014	2.034
		2.075	2.097	2.120	2.144	2.170	2.197	2.226	2.257	2.290
n	0.00				l'end.					
P	0.0000	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009
0.990	2.320	2.330	2.334	2.338				17 Ball State		
0.991	2.366	2.370	2.354	2.338	2.342	2.346	2.349	2.353	2.357	2.362
0.993	2.409	2.414	2.418	2.423	2.382 2.428	2.387 2.432	2.391	2.395 2.442	2.400	2.404
0.994	2.457	2.462	2.468	2.423	2.428	2.432	2.437 2.489	2.442	2.447 2.501	2.452
0.995	2.512	2.518	2.524	2.530	2.536	2.484	2.489	2.495	2.501	2.506 2.569
0.996	2.576	2.583	2.590	2.597	2.605	2.545	2.620	2.628	2.636	2.509
0.997	2.652	2.661	2.669	2.678	2.687	2.697	2.706	2.716	2.727	2.737
866.0	2.748 2.878	2.759	2.770	2.782	2.794	2.807	2.820	2.834	2.848	2.863
0.999	3.090	2.894	2.911	2.929	2.948	2.968	2.989	3.011	3.036	3.062
-		3.121	3.156 monly			3.291	3.353	3.432	3.540	3.719

©2006 Raj Jain www.rajjain.com

- $\bar{x} = 3.90, s = 0.95 \text{ and } n = 32$
- □ A 90% confidence interval for the mean = $3.90 \mp (1.645)(0.95)/\sqrt{32} = (3.62, 4.17)$
- ❑ We can state with 90% confidence that the population mean is between 3.62 and 4.17 The chance of error in this statement is 10%.


A 95% confidence interval for the mean = $3.90 \mp (1.960)(0.95)/\sqrt{32}$ = (3.57, 4.23)

A 99% confidence interval for the mean = $3.90 \mp (2.576)(0.95)/\sqrt{32}$

= (3.46, 4.33)

Confidence Interval: Meaning

□ If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.

Confidence Interval for Small Samples

□ 100(1- α) % confidence interval for *n* < 30:

$$(\bar{x} - t_{[1-\alpha/2;n-1]}s/\sqrt{n}, \bar{x} + t_{[1-\alpha/2;n-1]}s/\sqrt{n})$$

 $\Box t_{[1-\alpha/2; n-1]} = (1-\alpha/2)$ -quantile of a *t*-variate with *n*-1 degrees of freedom

$$\begin{aligned} x &\sim N(\mu, \sigma^2) \\ \Rightarrow (\bar{x} - \mu) / (\sigma / \sqrt{n}) \sim N(0, 1) \\ (n - 1) s^2 / \sigma^2 \sim \chi^2 (n - 1) \\ (\bar{x} - \mu) / \sqrt{s^2 / n} \sim t(n - 1) \end{aligned}$$

©2006 Raj Jain www.rajjain.com

n	р											
	0.6000	0.7000	0.8000	0.9000	0.9500	0.9750	0.9950	0.9995				
1	0.325	0.727	1.377	3.078	6.314	12.706	63.657	636.619				
2	0.289	0.617	1.061	1.886	2.920	4.303	9.925	31.599				
3	0.277	0.584	0.978	1.638	2.353	3.182	5.841	12.924				
4	0.271	0.569	0.941	1.533	2.132	2.776	4.604	8.610				
5	0.267	0.559	0.920	1.476	2.015	2.571	4.032	6.869				
6	0.265	0.553	0.906	1.440	1.943	2.447	3.707	5.959				
7	0.263	0.549	0.896	1.415	1.895	2.365	3.499	5.408				
8	0.262	0.546	0.889	1.397	1.860	2.306	3.355	5.041				
9	0.261	0.543	0.883	1.383	1.833	2.262	3.250	4.781				
10	0.260	0.542	0.879	1.372	1.812	2.228	3.169	4.781				
11	0.260	0.540	0.876	1.363	1.796	2.201	3.109	4.437				
12	0.259	0.539	0.873	1.356	1.782	2.179	3.055	4.437				
13	0.259	0.538	0.870	1.350	1.771	2.160	3.033	4.318				
4	0.258	0.537	0.868	1.345	1.761	2.145	2.977	4.221				
15	0.258	0.536	0.866	1.343	1.753	2.143	2.947	4.140				
16	0.258	0.535	0.865	1.341	1.735	2.131	2.947					
17	0.257	0.535						4.015				
8	0.257	0.534	0.863	1.333	1.740	2.110	2.898	3.965				
9	0.257		0.862	1.330	1.734	2.101	2.878	3.922				
20	0.257	0.533	0.861	1.328	1.729	2.093	2.861	3.883				
21	0.257	0.533	0.860	1.325	1.725	2.086	2.845	3.850				
22	0.256	0.532	0.859	1.323	1.721	2.080	2.831	3.819				
23	0.256	0.532	0.858	1.321	1.717	2.074	2.819	3.792				
24	0.256	0.532	0.858	1.319	1.714	2.069	2.807	3.768				
25	0.256	0.531	0.857	1.318	1.711	2.064	2.797	3.745				
26	0.256	0.531	0.856	1.316	1.708	2.060	2.787	3.725				
27	0.256	0.531	0.856	1.315	1.706	2.056	2.779	3.707				
27 28 29	0.256	0.531	0.855	1.314	1.703	2.052	2.771	3.690				
	0.256	0.530	0.855	1.313	1.701	2.048	2.763	3.674				
30	0.256	0.530	0.854	1.311	1.699	2.045	2.756	3.659				
60		0.530	0.854	1.310	1.697	2.042	2.750	3.646				
90	0.254 0.254	0.527	0.848	1.296	1.671	2.000	2.660	3.460				
20	0.254	0.526	0.846	1.290	1.662	1.987	2.632	3.402				
-	0.254	0.526	0.845	1.289	1.658	1.980	2.617	3.373				

13-10

TABLE A.4 Quantiles of the t Distribution

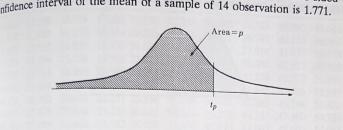
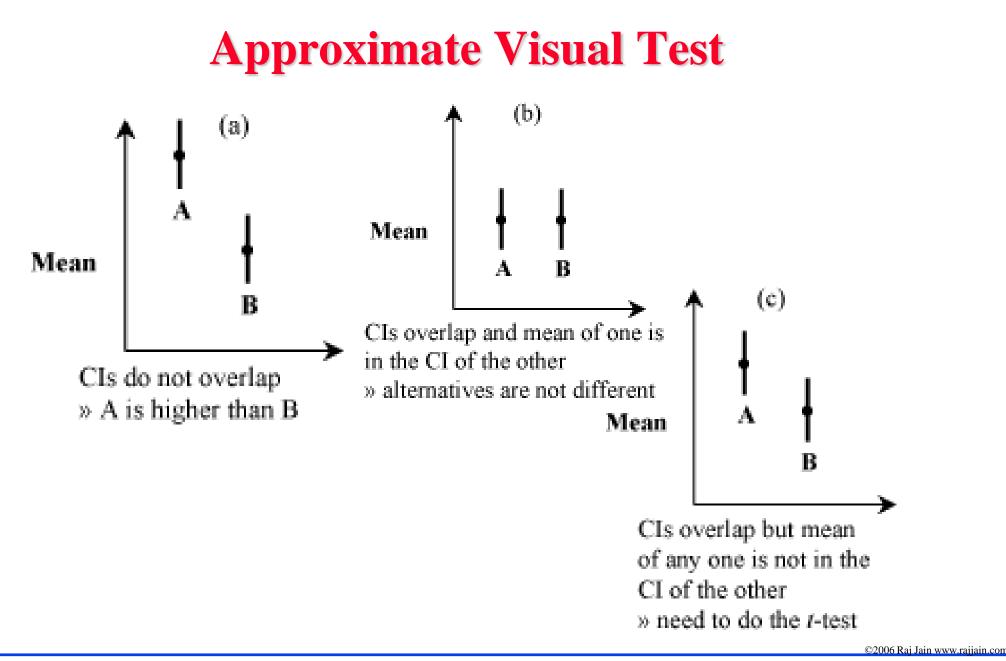


Table A.4 lists $t_{[p;n]}$. For example, the $t_{[0.95;13]}$ required for a two-sided 90% confidence interval of the mean of a sample of 14 observation is 1.771.

A.4 QUANTILES OF THE t DISTRIBUTION

631


- □ Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.
- \Box Mean = 0, Sample standard deviation = 0.138.
- □ For 90% interval: $t_{[0.95;7]} = 1.895$
- **Confidence** interval for the mean

$$0 \mp 1.895 \times 0.138 = 0 \mp 0.262 = (-0.262, 0.262)$$

- Performance: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}. Is one system better?
- Differences: {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}.

Sample mean = -0.32Sample variance = 81.62Sample standard deviation = 9.03Confidence interval for the mean = $-0.32 \mp t\sqrt{(81.62/6)}$ = $-0.32 \mp t(3.69)$ $t_{[0.95,5]} = 2.015$ 90% confidence interval = $-0.32 \mp (2.015)(3.69)$ = (-7.75, 7.11)

□ Answer: No. They are not different.

Sample Size for Determining Mean

□ Larger sample \Rightarrow Narrower confidence interval \Rightarrow Higher confidence

 \sim

Question: How many observations *n* to get an accuracy of ± r% and a confidence level of 100(1-α)%?

$$\bar{x} \mp z \frac{s}{\sqrt{n}}$$

□ r% Accuracy \Rightarrow

 \Rightarrow

$$CI = (\bar{x}(1 - r/100), \bar{x}(1 + r/100))$$
$$\bar{x} \mp z \frac{s}{\sqrt{n}} = \bar{x} \left(1 \mp \frac{r}{100}\right)$$
$$z \frac{s}{\sqrt{n}} = \bar{x} \frac{r}{100}$$
$$n = \left(\frac{100zs}{r\bar{x}}\right)^2$$

Sample mean of the response time = 20 seconds Sample standard deviation = 5

Question: How many repetitions are needed to get the response time accurate within 1 second at 95% confidence?

\Box Required accuracy = 1 in 20 = 5%

Here, \bar{x} = 20, s= 5, z= 1.960, and r=5,

n=
$$\left(\frac{(100)(1.960)(5)}{(5)(20)}\right)^2 = (9.8)^2 = 96.04$$

A total of 97 observations are needed.

- □ All statistics based on a sample are random and should be specified with a confidence interval
- □ If the confidence interval includes zero, the hypothesis that the population mean is zero cannot be rejected
- \Box Paired observations \Rightarrow Test the difference for zero mean