
Recommender Systems

Prof. Gheith Abandah

Reference: Artificial Intelligence with Python, by Prateek Joshi, Packt
Publishing, 2017.

1

Outline

1. Introduction

2. The MovieLens dataset

3. Similarity scores

4. Building a collaborative recommendation system

5. Open source Python packages

6. Summary

2

1. Introduction

• YouTube Video: Recommendation Systems - Learn
Python for Data Science #3 by Siraj Raval

https://youtu.be/9gBC9R-msAk

3

https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk

1. Introduction

• A Recommender System predicts the likelihood
that a user would prefer an item and it
recommends items to the user.

• Examples
• Facebook — “People You May Know”
• Netflix — “Other Movies You May Enjoy”
• LinkedIn — “Jobs You May Be Interested In”
• Amazon — “Customer who bought this item also bought

…”
• Google — “Visually Similar Images”
• YouTube — “Recommended Videos”

4

1. Introduction

• Recommender System Types
1. A collaborative filtering algorithm works by finding a

set of people with preferences or tastes similar to the
target user. Using this smaller set of “similar” people,
it constructs a ranked list of suggestions.

2. Content-based filtering is based on a description of
the item and a profile of the user’s preferences to
recommend items that are similar to those that a user
liked.

3. Hybrid

5

2. The MovieLens DataSet

• 100,000 ratings (1-5) from 943 users on 1682
movies.

• Includes users data and ratings data

6

Users Ratings

3. Similarity Scores

1. Euclidean score (Euclidean distance, lower is
better)

𝑑 𝒙, 𝒚 = 𝑥𝑖 − 𝑦𝑖
2

𝑛

𝑖=1

2. Pearson score (1 is best)

7

4. Building a Collaborative
Recommendation System
1. Function to recommend movies for a user

2. For each other user:
1. Find the Pearson score of commonly rated movies,

ignoring dissimilar users.

2. Extract a list of movies that have been rated by this
user but haven't been rated by the input user.

3. For each item in this list, keep a track of the weighted
rating based on the similarity score.

3. Finally, sort the scores and extract the movie
recommendations.

8

4. Building a Collaborative
Recommendation System

9

Get movie recommendations for the input user
Assume the input user is in the dataset
and there is at lease one recommendation
def get_recommendations(dataset, input_user): # 1
 overall_scores = {}
 similarity_scores = {}
 for user in [x for x in dataset if x != input_user]:
 similarity_score = pearson_score(dataset, input_user,
 user) # 2.1
 if similarity_score <= 0:
 continue # 2.1
 filtered_list = [x for x in dataset[user] if x not in
 dataset[input_user] or dataset[input_user][x] == 0]
 for item in filtered_list:
 overall_scores.update({item: dataset[user][item]
 * similarity_score})

2.2

2.3

4. Building a Collaborative
Recommendation System

10

Generate movie ranks
movie_scores = np.array([[score, item] for item, score in
 overall_scores.items()])

Sort in decreasing order
movie_scores = movie_scores[
 np.argsort(movie_scores[:, 0])[::-1]]

Extract the movie recommendations
movie_recommendations = [movie for _, movie in
 movie_scores]

return movie_recommendations

3

5. Open Source Python Packages

• LightFM

• GraphLab

• Crab

• Surprise

• Python Recsys

• MRec

11

https://github.com/lyst/lightfm
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
http://muricoca.github.io/crab/
https://github.com/NicolasHug/Surprise
https://github.com/ocelma/python-recsys
https://github.com/ocelma/python-recsys
https://github.com/Mendeley/mrec

Summary

1. Introduction

2. The MovieLens dataset

3. Similarity scores

4. Building a collaborative recommendation system

5. Open source Python packages

6. Summary

12

