
Reinforcement Learning

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn, Keras and
TensorFlow by Aurélien Géron (O’Reilly). 2019, 978-1-492-03264-9.

1

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

2

Introduction

• YouTube Video: An introduction to Reinforcement
Learning from Arxiv Insights

https://youtu.be/JgvyzIkgxF0

3

https://youtu.be/JgvyzIkgxF0
https://youtu.be/JgvyzIkgxF0

1. Introduction – History

• RL started in 1950s
• 1992: IBM’s TD-Gammon, a

Backgammon playing program.
• 2013: DeepMind demonstrated a

system that learns to play Atari
games from scratch.

• Use deep learning with raw pixels as
inputs and without any prior
knowledge of the rules of the games.

• 2014: Google bought DeepMind for
$500M.

• 2016: AlphaGo beats Lee Sedol.

4

1. Introduction – Definition

• In Reinforcement Learning, a software agent makes
observations and takes actions within an
environment, and in return it receives rewards.

• Its objective is to learn to act in a way that will
maximize its expected long-term rewards.

• In short, the agent acts in the environment and
learns by trial and error to maximize its pleasure
and minimize its pain.

5

1. Introduction – Examples

6

(a) robotics
(b) Ms. Pac-Man
(c) Go player
(d) thermostat
(e) automatic
trader

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

7

2. Policy Search
• The algorithm used by the software agent to

determine its actions is called its policy.

• The policy can be deterministic or stochastic.

• Policy search techniques: Brute force, Genetic
algorithm, Policy Gradient (PG), Q-Learning.

8

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

9

3. OpenAI Gym
• OpenAI Gym is a toolkit that provides simulated

environments (Atari games, board games, 2D and
3D physical simulations, …).

• OpenAI is a nonprofit AI research company funded
in part by Elon Musk. Got $1 billion investment
from Microsoft.

>>> import gym

>>> env = gym.make("CartPole-v1")

>>> obs = env.reset()

>>> obs

array([-0.012586, -0.001566, 0.042077, -0.001805])

10

Cart position, cart speed,
pole angle, pole velocity

3. OpenAI Gym

• render() can also return the rendered image as a
NumPy array.

>>> img = env.render(mode="rgb_array")

>>> img.shape # height, width, channels (3 = RGB)

(800, 1200, 3)

11

>>> action = 1 # accelerate right

>>> obs, reward, done, info = env.step(action)

>>> obs

array([-0.012617, 0.192928, 0.042041, -0.280921])

>>> reward

1.0

>>> done

False

>>> info

{}

3. Balancing the pole

12

The possible actions are integers 0
and 1, which represent accelerating

left (0) or right (1).

3. Balancing the pole

def basic_policy(obs):
 angle = obs[2]
 return 0 if angle < 0 else 1

totals = []
for episode in range(500):
 episode_rewards = 0
 obs = env.reset()
 for step in range(200):
 action = basic_policy(obs)
 obs, reward, done, info = env.step(action)
 episode_rewards += reward
 if done:
 break
 totals.append(episode_rewards)

13

Accelerates left when
the pole is leaning left
and accelerates right

when the pole is
leaning right.

3. Balancing the pole

• Even with 500 tries, this policy never managed to
keep the pole upright for more than 68 consecutive
steps.

>>> import numpy as np

>>> np.mean(totals), np.std(totals), np.min(totals),

 np.max(totals)

(41.718, 8.858356280936096, 24.0, 68.0)

14

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

15

4. Neural Network Policies

• Takes an observation as
input, and outputs the
probability for each
action

• We select an action
randomly, according to
the estimated
probabilities.

• Explore and exploit

16

4. Neural Network Policy in Keras

Building a polity network is easy

import tensorflow as tf

from tensorflow import keras

n_inputs = 4 # == env.observation_space.shape[0]

model = keras.models.Sequential([

 keras.layers.Dense(5, activation="elu",

 input_shape=[n_inputs]),

 keras.layers.Dense(1, activation="sigmoid"),

])

Training it is something else

17

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

18

5. The Credit Assignment Problem

• Rewards are typically
sparse and delayed.

• Credit assignment
problem: when the agent
gets a reward, it is hard for
it to know which actions
should get credited (or
blamed) for it.

• Evaluate an action based on
the sum of all the rewards
that come after it, usually
applying a discount rate 
at each step.

19

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

20

6. Q-Learning

• Reference: Keon Kim, Deep Q-Learning with Keras and
Gym, https://keon.io/deep-q-learning/

• Deep reinforcement learning (deep Q-learning)
example to play a CartPole game using Keras and Gym.

• Google’s DeepMind published Playing Atari with Deep
Reinforcement Learning where they introduced the
algorithm Deep Q Network (DQN) in 2013.

• In DQN, the quality function Q is used to approximate
the reward based on a state. Q(s,a) calculates the
expected future value from state s and action a.

• A neural network is used to approximate the reward
based on the state.

21

https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

6. Q-Learning
• Carry out an action a, and observe the reward r and resulting

new state s’.

• Calculate the maximum target Q and then discount it so that the
future reward is worth less than immediate reward by .

• Add the current reward to the discounted future reward to get
the target value.

• Subtracting our current prediction from the target gives the loss.

• Squaring this value allows us to punish the large loss value more
and treat the negative values same as the positive values.

22

6. DQN – Imports and Definitions

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

EPISODES = 5000

23

6. DQN – Agent Class (1/4)

class DQNAgent:

 def __init__(self, state_size, action_size):

 self.state_size = state_size

 self.action_size = action_size

 self.memory = deque(maxlen=2000)

 self.gamma = 0.95 # discount rate

 self.epsilon = 1.0 # exploration rate

 self.epsilon_min = 0.01 # min exploration rate

 self.epsilon_decay = 0.995

 self.learning_rate = 0.001

 self.model = self._build_model()

24

6. DQN – Agent Class (2/4)

 def _build_model(self):

 model = Sequential()

 model.add(Dense(24, input_dim=self.state_size,
 activation='relu'))

 model.add(Dense(24, activation='relu'))

 model.add(Dense(self.action_size,
 activation='linear'))

 model.compile(loss='mse',
 optimizer=Adam(lr=self.learning_rate))

 return model

25

4

2

6. DQN – Agent Class (3/4)

 def remember(self, state, action, reward,
 next_state, done):

 # Queue of previous experiences to re-train
 the model

 self.memory.append((state, action, reward,
 next_state, done))

 def act(self, state):

 # Returns an action randomly or from the model

 if np.random.rand() <= self.epsilon:

 return random.randrange(self.action_size)

 act_values = self.model.predict(state)

 return np.argmax(act_values[0]) 26

6. DQN – Agent Class (4/4)

 def replay(self, batch_size):

 minibatch = random.sample(self.memory, batch_size)

 for state, action, reward, next_state, done in
 minibatch:

 target = reward

 if not done:

 target = (reward + self.gamma * np.max(
 self.model.predict(next_state)[0]))

 target_f = self.model.predict(state)

 target_f[0][action] = target

 self.model.fit(state, target_f, epochs=1,
 verbose=0)

 if self.epsilon > self.epsilon_min:

 self.epsilon *= self.epsilon_decay
27

Learn to predict
the reward

Replay()

trains the neural
net with
experiences in
the memory

6. DQN – Setup

if __name__ == "__main__":

 env = gym.make('CartPole-v1')

 state_size = env.observation_space.shape[0] # 4

 action_size = env.action_space.n # 2

 agent = DQNAgent(state_size, action_size)

 done = False

 batch_size = 32

28

6. DQN – Training
for e in range(EPISODES):
 state = env.reset()
 state = np.reshape(state, [1, state_size])
 for time in range(5000):
 action = agent.act(state)
 next_state, reward, done, _ = env.step(action)
 reward = reward if not done else -10
 next_state = np.reshape(next_state, [1, state_size])
 agent.remember(state, action, reward, next_state,

 done)
 state = next_state
 if done:
 print("episode: {}/{}, score: {}"
 .format(e, EPISODES, time))
 break
 if len(agent.memory) > batch_size:
 agent.replay(batch_size) 29

6. DQN – Results

30

Exercises

From Chapter 18, solve exercises:
• 1 – 6

31

Summary

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

32

