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Introduction 

• YouTube Video: Deep Learning with Tensorflow - 
The Recurrent Neural Network Model from 
Cognitive Class 

 

https://youtu.be/C0xoB8L8ms0 
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1. Introduction 

• Recurrent neural networks (RNNs) are used to 
handle time series data or sequences. 

• Applications: 
• Predicting the future (stock prices) 

• Autonomous driving systems (predicting trajectories) 

• Natural language processing (automatic translation, 
speech-to-text, or sentiment analysis) 

• Creativity (music composition, handwriting, drawing) 

• Image analysis (image captions) 
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2. Recurrent Neurons and Layers 

• The figure below shows a recurrent neuron (left), 
unrolled through time (right). 
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2. Recurrent Neurons and Layers 

• Multiple recurrent neurons can be used in a layer. 

 

 

 

 

 

 

• The output of the layer is: 
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2. Recurrent Neurons and Layers 

• Recurrent neurons have memory (hold state) and 
are called memory cells. 

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t) 
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2. Recurrent Neurons and Layers: 
Input and Output Sequences 
1. Seq to seq net.: For 

predicting the future. 

2. Seq to vector: For 
analysis, e.g., 
sentiment score. 

3. Vector to seq: For 
image captioning. 

4. Encoder-decoder:  
For sequence 
transcription. 
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3. Training RNNs 

• Training using strategy 
called backpropagation 
through time (BPTT). 

• Forward pass (dashed) 

• Cost function of the 
not-ignored outputs. 

• Cost gradients are 
propagated backward 
through the unrolled 
network. 
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4. Forecasting a Time Series 

• The data is a sequence 
of one or more values 
per time step. 
• Univariate time series 

• Multivariate time series 

• Forecasting: predicting 
future values 
• Forecast the next value 

• Forecast N next values 
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4.1 Implementing a Simple RNN 

# Generate 10,000 time series 

n_steps = 50 

series = generate_time_series(10000, n_steps + 1) 
 

# Split them 7,000 : 2,000 : 1,000 

X_train, y_train = series[:7000, :n_steps], 

 series[:7000, -1] # (7000, 50, 1), (7000, 1) 

X_valid, y_valid = series[7000:9000, :n_steps], 

 series[7000:9000, -1] 

X_test, y_test = series[9000:, :n_steps], 

 series[9000:, -1] 
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4.1 Implementing a Simple RNN 

# Sequential model of one neuron 

model = keras.models.Sequential([ 

 keras.layers.SimpleRNN(1, input_shape=[None, 1]) 

]) 

 

optimizer = keras.optimizers.Adam(lr=0.005) 

model.compile(loss="mse", optimizer=optimizer) 

history = model.fit(X_train, y_train, epochs=20, 

                    validation_data=(X_valid, y_valid)) 

 

model.evaluate(X_valid, y_valid) # MSE = 0.011 

                        # Dense achieves 0.004 
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Uses tanh 
activation ht = yt 



4.2 Deep RNNs 
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4.2 Deep RNNs 

# Sequential model of two hidden RNN layers 

model = keras.models.Sequential([ 

 keras.layers.SimpleRNN(20, 

  return_sequences=True, # output all steps 

  input_shape=[None, 1]), 

 keras.layers.SimpleRNN(20), 

 keras.layers.Dense(1) 

]) 

 

# MSE = 0.0026 
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4.3 Forecasting Several Time 
Steps Ahead 
• Can train an RNN to predict all N next values at 

once (sequence-to-vector model). 

• The output layer should have N neurons. 
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4.3 Forecasting Several Time 
Steps Ahead 
# Generate 10,000 time series with 10 steps ahead 

series = generate_time_series(10000, n_steps + 10) 

 

# Split them 7,000 : 2,000 : 1,000 

X_train, y_train = series[:7000, :n_steps], 

 series[:7000, -10, 0] # (7000, 50, 1), (7000,10) 

X_valid, y_valid = series[7000:9000, :n_steps], 

 series[7000:9000, -10, 0] 

X_test, y_test = series[9000:, :n_steps], 

 series[9000:, -10, 0] 
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4.3 Forecasting Several Time 
Steps Ahead 
# Sequential model of two hidden RNN layers 

model = keras.models.Sequential([ 

 keras.layers.SimpleRNN(20, 

  return_sequences=True, 

  input_shape=[None, 1]), 

 keras.layers.SimpleRNN(20), 

 keras.layers.Dense(10) 

]) 

 

# MSE = 0.008 
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5. Handling Long Sequences 

• Training long sequences has two major challenges: 
• Unstable gradients 
• Forgetting the first inputs in the sequence 

• For the unstable gradients: 
• Does not help: ReLU activation, batch normalization 
• Helps: good parameter initialization, faster optimizers, 

dropout 
 

model = Sequential() 

model.add(layers.SimpleRNN(20, dropout=0.2, 
recurrent_dropout=0.2, input_shape=[None, 1])) 

model.add(layers.Dense(1)) 
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To fight overfitting and 
unstable gradients 



5. Handling Long Sequences 

 

• To solve the short-term memory problem, use 
• LSTM cell 

• GRU cell 

 

• These cells can be used in place of SimpleRNN 
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5.1 LSTM Cell 

• The Long Short-Term 
Memory (LSTM) cell 
was proposed in 1997. 

• Training converges 
faster and it detects 
long-term 
dependencies in the 
data. 

• h(t) as the short-term 
state and c(t) as the 
long-term state. 
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model.add(LSTM(20)) 



5.2 GRU Cell 

• The Gated Recurrent 
Unit (GRU) cell was 
proposed in 2014. 

• Simplified version of 
the LSTM cell, performs 
just as well. 

• A single gate controls 
the forget gate and the 
input gate. 
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model.add(GRU(20)) 



6. Exercises 

From Chapter 15, solve exercises: 
• 1 through 6  
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