
Recurrent Neural
Networks

Prof. Gheith Abandah

References:

• Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow by
Aurélien Géron (O’Reilly). 2019, 978-1-492-03264-9.

• François Chollet, Deep Learning with Python, Manning Pub. 2018

1

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

2

Introduction

• YouTube Video: Deep Learning with Tensorflow -
The Recurrent Neural Network Model from
Cognitive Class

https://youtu.be/C0xoB8L8ms0

3

https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0
https://youtu.be/C0xoB8L8ms0

1. Introduction

• Recurrent neural networks (RNNs) are used to
handle time series data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation,
speech-to-text, or sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)

4

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

5

2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left),
unrolled through time (right).

6

2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:

7

2. Recurrent Neurons and Layers

• Recurrent neurons have memory (hold state) and
are called memory cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)

8

2. Recurrent Neurons and Layers:
Input and Output Sequences
1. Seq to seq net.: For

predicting the future.

2. Seq to vector: For
analysis, e.g.,
sentiment score.

3. Vector to seq: For
image captioning.

4. Encoder-decoder:
For sequence
transcription.

9

1. 2.

3. 4.

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

10

3. Training RNNs

• Training using strategy
called backpropagation
through time (BPTT).

• Forward pass (dashed)

• Cost function of the
not-ignored outputs.

• Cost gradients are
propagated backward
through the unrolled
network.

11

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

12

4. Forecasting a Time Series

• The data is a sequence
of one or more values
per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting
future values
• Forecast the next value

• Forecast N next values

13

4.1 Implementing a Simple RNN

Generate 10,000 time series

n_steps = 50

series = generate_time_series(10000, n_steps + 1)

Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps],

 series[:7000, -1] # (7000, 50, 1), (7000, 1)

X_valid, y_valid = series[7000:9000, :n_steps],

 series[7000:9000, -1]

X_test, y_test = series[9000:, :n_steps],

 series[9000:, -1]

14

4.1 Implementing a Simple RNN

Sequential model of one neuron

model = keras.models.Sequential([

 keras.layers.SimpleRNN(1, input_shape=[None, 1])

])

optimizer = keras.optimizers.Adam(lr=0.005)

model.compile(loss="mse", optimizer=optimizer)

history = model.fit(X_train, y_train, epochs=20,

 validation_data=(X_valid, y_valid))

model.evaluate(X_valid, y_valid) # MSE = 0.011

 # Dense achieves 0.004

15

Uses tanh
activation ht = yt

4.2 Deep RNNs

16

4.2 Deep RNNs

Sequential model of two hidden RNN layers

model = keras.models.Sequential([

 keras.layers.SimpleRNN(20,

 return_sequences=True, # output all steps

 input_shape=[None, 1]),

 keras.layers.SimpleRNN(20),

 keras.layers.Dense(1)

])

MSE = 0.0026

17

4.3 Forecasting Several Time
Steps Ahead
• Can train an RNN to predict all N next values at

once (sequence-to-vector model).

• The output layer should have N neurons.

18

4.3 Forecasting Several Time
Steps Ahead
Generate 10,000 time series with 10 steps ahead

series = generate_time_series(10000, n_steps + 10)

Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps],

 series[:7000, -10, 0] # (7000, 50, 1), (7000,10)

X_valid, y_valid = series[7000:9000, :n_steps],

 series[7000:9000, -10, 0]

X_test, y_test = series[9000:, :n_steps],

 series[9000:, -10, 0]

19

4.3 Forecasting Several Time
Steps Ahead
Sequential model of two hidden RNN layers

model = keras.models.Sequential([

 keras.layers.SimpleRNN(20,

 return_sequences=True,

 input_shape=[None, 1]),

 keras.layers.SimpleRNN(20),

 keras.layers.Dense(10)

])

MSE = 0.008

20

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

21

5. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers,

dropout

model = Sequential()

model.add(layers.SimpleRNN(20, dropout=0.2,
recurrent_dropout=0.2, input_shape=[None, 1]))

model.add(layers.Dense(1))

22

To fight overfitting and
unstable gradients

5. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN

23

5.1 LSTM Cell

• The Long Short-Term
Memory (LSTM) cell
was proposed in 1997.

• Training converges
faster and it detects
long-term
dependencies in the
data.

• h(t) as the short-term
state and c(t) as the
long-term state.

24

model.add(LSTM(20))

5.2 GRU Cell

• The Gated Recurrent
Unit (GRU) cell was
proposed in 2014.

• Simplified version of
the LSTM cell, performs
just as well.

• A single gate controls
the forget gate and the
input gate.

25

model.add(GRU(20))

6. Exercises

From Chapter 15, solve exercises:
• 1 through 6

26

Summary

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

27

