# **Deep Neural Networks**

Prof. Gheith Abandah

Reference: *Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow* by Aurélien Géron (O'Reilly). 2019, 978-1-492-03264-9.

### Outline

- 1. Introduction
- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

#### **1. Introduction**

- Deep neural networks can solve complex problems and provide end-to-end solutions.
- When you train a deep network, you may face the following problems:
  - Vanishing or exploding gradients: The gradients grow smaller and smaller, or larger and larger.
  - Not enough data
  - Long training time
  - Overfitting

### Outline

#### 1. Introduction

- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

### 2. Vanishing/Exploding Gradients Problems

- Vanishing Problem: In the backpropagation algorithm, gradients often get smaller and smaller as the algorithm progresses down to the lower layers.
  - Lower layers' connection are left unchanged.
- Exploding Problem: the gradients can grow bigger and bigger.
  - Layers get very large weight updates and the algorithm diverges.
- Main Reasons: Using activation functions (logistic sigmoid) and weight initialization (normal distribution with 0-mean and 1-standard deviation).



#### 2.1 Glorot and He Initialization

- Glorot and Bengio: In order for the signal not to die out, nor to explode and saturate, the variance of the outputs of each layer should be equal to the variance of its inputs.
- Solution: the connection weights of each layer must be initialized randomly as follows:

Normal distribution with mean 0 and variance  $\sigma^2 = \frac{1}{fan_{avg}}$ Or a uniform distribution between -r and +r, with  $r = \sqrt{\frac{3}{fan_{avg}}}$  $fan_{avg} = (fan_{in} + fan_{out})/2$ .

### 2.1 Glorot and He Initialization

• Recommended initialization parameters for each type of activation function.

| Initialization | Activation functions          | σ² (Normal)           |
|----------------|-------------------------------|-----------------------|
| Glorot         | None, Tanh, Logistic, Softmax | 1 / <i>fan</i> avg    |
| Не             | ReLU & variants               | 2 / fan <sub>in</sub> |
| LeCun          | SELU                          | 1 / <i>fan</i> in     |

- For the uniform distribution, use  $r = \sqrt{3\sigma^2}$
- Keras uses Glorot initialization with a uniform distribution.

#### 2.1 Glorot and He Initialization

- To change it to He initialization: keras.layers.Dense(10, activation="relu", kernel\_initializer="he\_normal") # Or "he\_uniform"
- He initialization with a uniform distribution but based on fan<sub>avg</sub>: <u>he\_avg\_init</u> = keras.initializers.VarianceScaling( scale=2., mode='fan\_avg', distribution='uniform') keras.layers.Dense(10, activation="sigmoid", kernel\_initializer=he\_avg\_init)

- Step does not work with the back propagation algorithm.
- ReLU is better than sigmoid because it does not saturate for positive values and is fast.
- Dying ReLUs: A neuron dies when its input is negative for all training instances.



 Leaky ReLU performs better than ReLU.

LeakyReLU<sub> $\alpha$ </sub>(z) = max( $\alpha z$ , z)

• **α** between 0.01 and 0.3



model = keras.models.Sequential([

... keras.layers.Dense(10, kernel\_initializer="he\_normal"), keras.layers.LeakyReLU(alpha=0.2), # added as a layer

...

- Exponential linear unit (ELU) also performs better than ReLU but is slower.
- Scaled ELU (SELU) performs best with dense and CNN, but must scale inputs and use lecun\_normal.

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$



- Summary:
  - SELU > ELU > leaky ReLU > ReLU > tanh > logistic
- If you cannot use SELU, use ELU.
- For fast response, use leaky ReLU or ReLU.

#### **2.3 Batch Normalization**

- The techniques in §2.1 and §2.2 can significantly reduce the vanishing/exploding gradients problems at the beginning of training, but don't guarantee that they won't come back during training.
- Batch Normalization (BN) zero-centers and normalizes each layer input using statistics from the mini batch (> 30).
- Other benefits: Works even without §2.1 and §2.2, allows using larger LR, and have regularization effect.

#### **2.3 Batch Normalization**

• Implementing batch normalization with Keras is easy.

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, activation="elu",
    kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, activation="elu",
    kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.BatchNormalization(),
    keras.layers.BatchNormalization(),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(10, activation="softmax")
```

])

### 2.4 Gradient Clipping

- Mitigates the exploding gradients problem by clipping the gradients during backpropagation so that they never exceed some threshold.
- Use it when you observe that the gradients are exploding during training. You can track the size of the gradients using TensorBoard.

```
optimizer = keras.optimizers.SGD(clipvalue=1.0)
model.compile(loss="mse", optimizer=optimizer)
```

### Outline

- 1. Introduction
- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

### **3. Reusing Pretrained Layers**

- Transfer
   Learning: Using
   one NN
   developed for a
   certain task to
   solve another
   task.
- Useful to shorten training time or with small datasets.



#### **Transfer Learning with Keras**

```
# Load the ready model
model_A = keras.models.load_model("my_model_A.h5")
# Create a new model using all but the last layer
model_B_on_A = keras.models.Sequential(
       model_A.layers[:-1])
model_B_on_A.add(keras.layers.Dense(1,
       activation="sigmoid"))
# Freeze loaded layers then compile
for layer in model_B_on_A.layers[:-1]:
       layer.trainable = False
model_B_on_A.compile(loss="binary_crossentropy",
       optimizer="sgd", metrics=["accuracy"])
```

#### **Transfer Learning with Keras**

# Train the model for a few epochs history = model\_B\_on\_A.fit(X\_train\_B, y\_train\_B, epochs=4, validation\_data=(X\_valid\_B, y\_valid\_B)) **# Unreeze loaded layers** for layer in model\_B\_on\_A.layers[:-1]: layer.trainable = True # Compile with small learning rate (defalut = 1e-2) optimizer = keras.optimizers.SGD(lr=1e-4) model\_B\_on\_A.compile(loss="binary\_crossentropy", optimizer=optimizer, metrics=["accuracy"])

#### **Transfer Learning with Keras**

# Train the model for more epochs
history = model\_B\_on\_A.fit(X\_train\_B, y\_train\_B,
 epochs=16,
 validation\_data=(X\_valid\_B, y\_valid\_B))

### Outline

- 1. Introduction
- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

 The SGD optimizer can be made faster using momentum optimization



optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

• Nesterov momentum optimization measures the gradient of the cost function not at the local position  $\theta$  but slightly ahead in the direction of the momentum, at  $\theta + \beta m_{\theta_{\lambda}}$ 

1. 
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta} + \beta \mathbf{m})$$

2.  $\theta \leftarrow \theta + \mathbf{m}$ 



 The adaptive optimizers such as AdaGrad, RMSProp, Adam, and Nadam scale down the gradient vector along the steepest dimensions.



- RMSProp, Adam and Nadam often **converge fast**. But they can give poor **generalization**.
- Solution: Use Nesterov accelerated gradient.

| Class                        | Speed | Quality   |
|------------------------------|-------|-----------|
| SGD                          | *     | * * *     |
| SGD with momentum, Nestrov   | **    | * * *     |
| Adagrad                      | * * * | *         |
| RMSProp, Adam, Nadam, AdaMax | * * * | ** or *** |

### Outline

- 1. Introduction
- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

### 5. Avoiding Overfitting

- Deep neural networks typically have many parameters, giving them ability to fit a huge variety of complex datasets.
- Useful regularization techniques:
  - Early stopping
  - Batch normalization
  - $\ell_1$  and  $\ell_2$  regularization
  - Dropout

## **5.1** $\ell_1$ and $\ell_2$ Regularization

- Constrain a neural network's connection weights.
- $e_1$ : Cost function = Loss +  $\frac{\lambda}{2m}$  \*  $\sum ||w||$
- $e_2$ : Cost function = Loss +  $\frac{\lambda}{2m}$  \*  $\sum ||w||^2$

### **5.2 Dropout**

- Popular technique to improve accuracy.
- At every training step, every neuron (excluding the output neurons) has a probability p of being temporarily dropped out.



#### **5.2 Dropout**

model = keras.models.Sequential([ keras.layers.Flatten(input\_shape=[28, 28]), keras.layers.Dropout(rate=0.2), keras.layers.Dense(300, activation="elu", kernel\_initializer="he\_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(100, activation="elu", kernel\_initializer="he\_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(10, activation="softmax") ])

### Outline

- 1. Introduction
- 2. Vanishing/Exploding Gradients Problems
  - Glorot and He Initialization
  - Nonsaturating Activation Functions
  - Batch Normalization
  - Gradient Clipping
- 3. Reusing Pretrained Layers
- 4. Faster Optimizers
- 5. Avoiding Overfitting
  - $\ell_1$  and  $\ell_2$  Regularization
  - Dropout
- 6. Summary
- 7. Exercise

### 6. Summary

• Recommended default DNN configuration

| Hyperparameter         | Default value                               |
|------------------------|---------------------------------------------|
| Kernel initializer     | He initialization                           |
| Activation function    | ELU                                         |
| Normalization          | None if shallow; Batch Norm if deep         |
| Regularization         | Early stopping (+ $\ell_2$ reg. if needed)  |
| Optimizer              | Momentum optimization (or RMSProp or Nadam) |
| Learning rate schedule | 1 cycle                                     |

### 6. Summary

• For a simple stack of dense or CNN layers.

| Hyperparameter         | Default value                               |
|------------------------|---------------------------------------------|
| Kernel initializer     | LeCun initialization                        |
| Activation function    | SELU                                        |
| Normalization          | None (self-normalization)                   |
| Regularization         | Alpha dropout if needed                     |
| Optimizer              | Momentum optimization (or RMSProp or Nadam) |
| Learning rate schedule | 1 cycle                                     |

### 7. Exercise

From Chapter 11, solve exercise:

• 8