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1. Introduction 

• Deep neural networks can solve complex problems 
and provide end-to-end solutions. 

• When you train a deep network, you may face the 
following problems: 
• Vanishing or exploding gradients: The gradients grow 

smaller and smaller, or larger and larger. 

• Not enough data 

• Long training time 

• Overfitting 
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2. Vanishing/Exploding Gradients 
Problems 
• Vanishing Problem: In the backpropagation algorithm, 

gradients often get smaller and smaller as the 
algorithm progresses down to the lower layers. 
• Lower layers’ connection are left unchanged. 

• Exploding Problem: the gradients can grow bigger and 
bigger. 
• Layers get very large weight updates and the algorithm 

diverges. 

• Main Reasons: Using activation functions  
(logistic sigmoid) and weight initialization  
(normal distribution with 0-mean and  
1-standard deviation). 
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2.1 Glorot and He Initialization 

• Glorot and Bengio: In order for the signal not to die 
out, nor to explode and saturate, the variance of 
the outputs of each layer should be equal to the 
variance of its inputs. 

• Solution: the connection weights of each layer 
must be initialized randomly as follows: 
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2.1 Glorot and He Initialization 

• Recommended initialization parameters for each 
type of activation function. 

 

 

 

 

• For the uniform distribution, use 

• Keras uses Glorot initialization with a uniform 
distribution.  
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2.1 Glorot and He Initialization 

• To change it to He initialization:  
keras.layers.Dense(10, activation="relu", 

 kernel_initializer="he_normal") # Or "he_uniform" 

 

• He initialization with a uniform distribution but 
based on fanavg: 
he_avg_init = keras.initializers.VarianceScaling( 

 scale=2., mode='fan_avg', distribution='uniform') 

keras.layers.Dense(10, activation="sigmoid", 

 kernel_initializer=he_avg_init) 
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2.2 Nonsaturating Activation 
Functions 
• Step does not work 

with the back 
propagation algorithm. 

• ReLU is better than 
sigmoid because it does 
not saturate for positive 
values and is fast. 

• Dying ReLUs: A neuron 
dies when its input is 
negative for all training 
instances. 
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2.2 Nonsaturating Activation 
Functions 
• Leaky ReLU performs 

better than ReLU. 

 

 

• α between 0.01 and 0.3 
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model = keras.models.Sequential([ 
 … 
 keras.layers.Dense(10, kernel_initializer="he_normal"), 
 keras.layers.LeakyReLU(alpha=0.2), # added as a layer 
 … 
]) 



2.2 Nonsaturating Activation 
Functions 
• Exponential linear unit 

(ELU) also performs 
better than ReLU but is 
slower. 

• Scaled ELU (SELU) 
performs best with 
dense and CNN, but 
must scale inputs and 
use lecun_normal. 

11 

layer = keras.layers.Dense(10, activation="selu", 
 kernel_initializer="lecun_normal")  



2.2 Nonsaturating Activation 
Functions 

 

• Summary: 
• SELU > ELU > leaky ReLU > ReLU > tanh > logistic 

 

• If you cannot use SELU, use ELU. 

• For fast response, use leaky ReLU or ReLU. 
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2.3 Batch Normalization 

• The techniques in §2.1 and §2.2 can significantly 
reduce the vanishing/exploding gradients problems 
at the beginning of training, but don’t guarantee 
that they won’t come back during training. 

• Batch Normalization (BN) zero-centers and 
normalizes each layer input using statistics from the 
mini batch (> 30). 

• Other benefits: Works even without §2.1 and §2.2, 
allows using larger LR, and have regularization 
effect. 
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2.3 Batch Normalization 

• Implementing batch normalization with Keras is easy. 
 
model = keras.models.Sequential([ 
 keras.layers.Flatten(input_shape=[28, 28]), 
 keras.layers.BatchNormalization(), 
 keras.layers.Dense(300, activation="elu", 
 kernel_initializer="he_normal"), 
 keras.layers.BatchNormalization(), 
 keras.layers.Dense(100, activation="elu", 
 kernel_initializer="he_normal"), 
 keras.layers.BatchNormalization(), 
 keras.layers.Dense(10, activation="softmax") 
]) 
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2.4 Gradient Clipping 

• Mitigates the exploding gradients problem by 
clipping the gradients during backpropagation so 
that they never exceed some threshold. 

• Use it when you observe that the gradients are 
exploding during training. You can track the size of 
the gradients using TensorBoard. 

 
optimizer = keras.optimizers.SGD(clipvalue=1.0) 

model.compile(loss="mse", optimizer=optimizer) 
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3. Reusing Pretrained Layers 

• Transfer 
Learning: Using 
one NN 
developed for a 
certain task to 
solve another 
task. 

• Useful to shorten 
training time or 
with small 
datasets. 
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Transfer Learning with Keras 

# Load the ready model 

model_A = keras.models.load_model("my_model_A.h5") 

# Create a new model using all but the last layer 

model_B_on_A = keras.models.Sequential( 

 model_A.layers[:-1]) 

model_B_on_A.add(keras.layers.Dense(1, 

 activation="sigmoid")) 

# Freeze loaded layers then compile 

for layer in model_B_on_A.layers[:-1]: 

 layer.trainable = False 

model_B_on_A.compile(loss="binary_crossentropy", 

 optimizer="sgd", metrics=["accuracy"]) 
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Transfer Learning with Keras 

# Train the model for a few epochs 

history = model_B_on_A.fit(X_train_B, y_train_B, 
 epochs=4, 

 validation_data=(X_valid_B, y_valid_B)) 

# Unreeze loaded layers 

for layer in model_B_on_A.layers[:-1]: 

 layer.trainable = True 

# Compile with small learning rate (defalut = 1e-2) 

optimizer = keras.optimizers.SGD(lr=1e-4) 

model_B_on_A.compile(loss="binary_crossentropy", 

 optimizer=optimizer, metrics=["accuracy"]) 
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Transfer Learning with Keras 

# Train the model for more epochs 

history = model_B_on_A.fit(X_train_B, y_train_B, 

 epochs=16,  

 validation_data=(X_valid_B, y_valid_B)) 
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4. Faster Optimizers 

• The SGD optimizer can be made faster using 
momentum optimization 
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optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9) 

β 



4. Faster Optimizers 

• Nesterov momentum optimization measures the 
gradient of the cost function not at the local 
position θ but slightly ahead in the direction of the 
momentum, at θ + βm 
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optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, 
     nesterov=True) 



4. Faster Optimizers 

• The adaptive optimizers such as AdaGrad, 
RMSProp, Adam, and Nadam scale down the 
gradient vector along the steepest dimensions. 
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optimizer = keras.optimizers.RMSprop() 
optimizer = keras.optimizers.Adam() 



4. Faster Optimizers 

• RMSProp, Adam and Nadam often converge fast. 
But they can give poor generalization. 

• Solution: Use Nesterov accelerated gradient.  
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Class Speed Quality 

SGD * *** 

SGD with momentum, Nestrov ** *** 

Adagrad *** * 

RMSProp, Adam, Nadam, AdaMax *** ** or *** 
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5. Avoiding Overfitting 

• Deep neural networks typically have many 
parameters, giving them ability to fit a huge variety 
of complex datasets. 

• Useful regularization techniques: 
• Early stopping 

• Batch normalization 

• ℓ1 and ℓ2 regularization  

• Dropout  
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5.1  ℓ1 and ℓ2 Regularization  

• Constrain a neural network’s connection weights. 

• ℓ1: 

• ℓ2: 

 
layer = keras.layers.Dense(100, activation="elu", 

 kernel_initializer="he_normal", 

 kernel_regularizer=keras.regularizers.l1(0.01)) 

# The other regularization functions: 

keras.regularizers.l2(0.01) 

keras.regularizers.l1_l2(l1=0.01, l2=0.01) 
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5.2 Dropout 

• Popular technique to improve accuracy. 

• At every training step, every neuron (excluding the 
output neurons) has a probability p of being 
temporarily dropped out. 
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5.2 Dropout 

model = keras.models.Sequential([ 

 keras.layers.Flatten(input_shape=[28, 28]), 

 keras.layers.Dropout(rate=0.2), 

 keras.layers.Dense(300, activation="elu", 

  kernel_initializer="he_normal"), 

 keras.layers.Dropout(rate=0.2), 

 keras.layers.Dense(100, activation="elu", 

  kernel_initializer="he_normal"), 

 keras.layers.Dropout(rate=0.2), 

 keras.layers.Dense(10, activation="softmax") 

]) 
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6. Summary 

• Recommended default DNN configuration 
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Hyperparameter Default value 

Kernel initializer  He initialization 

Activation function  ELU 

Normalization  None if shallow; Batch Norm if 
deep 

Regularization  Early stopping (+ℓ2 reg. if needed) 

Optimizer  Momentum optimization (or 
RMSProp or Nadam) 

Learning rate schedule 1 cycle 



6. Summary 

• For a simple stack of dense or CNN layers. 
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Hyperparameter Default value 

Kernel initializer  LeCun initialization 

Activation function  SELU 

Normalization  None (self-normalization) 

Regularization  Alpha dropout if needed 

Optimizer  Momentum optimization (or 
RMSProp or Nadam) 

Learning rate schedule 1 cycle 



7. Exercise 

From Chapter 11, solve exercise: 
• 8 
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