
Deep Neural Networks

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn, Keras and
TensorFlow by Aurélien Géron (O’Reilly). 2019, 978-1-492-03264-9.

1

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
2

1. Introduction

• Deep neural networks can solve complex problems
and provide end-to-end solutions.

• When you train a deep network, you may face the
following problems:
• Vanishing or exploding gradients: The gradients grow

smaller and smaller, or larger and larger.

• Not enough data

• Long training time

• Overfitting

3

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
4

2. Vanishing/Exploding Gradients
Problems
• Vanishing Problem: In the backpropagation algorithm,

gradients often get smaller and smaller as the
algorithm progresses down to the lower layers.
• Lower layers’ connection are left unchanged.

• Exploding Problem: the gradients can grow bigger and
bigger.
• Layers get very large weight updates and the algorithm

diverges.

• Main Reasons: Using activation functions
(logistic sigmoid) and weight initialization
(normal distribution with 0-mean and
1-standard deviation).

5

2.1 Glorot and He Initialization

• Glorot and Bengio: In order for the signal not to die
out, nor to explode and saturate, the variance of
the outputs of each layer should be equal to the
variance of its inputs.

• Solution: the connection weights of each layer
must be initialized randomly as follows:

6

2.1 Glorot and He Initialization

• Recommended initialization parameters for each
type of activation function.

• For the uniform distribution, use

• Keras uses Glorot initialization with a uniform
distribution.

7

2.1 Glorot and He Initialization

• To change it to He initialization:
keras.layers.Dense(10, activation="relu",

 kernel_initializer="he_normal") # Or "he_uniform"

• He initialization with a uniform distribution but
based on fanavg:
he_avg_init = keras.initializers.VarianceScaling(

 scale=2., mode='fan_avg', distribution='uniform')

keras.layers.Dense(10, activation="sigmoid",

 kernel_initializer=he_avg_init)

8

2.2 Nonsaturating Activation
Functions
• Step does not work

with the back
propagation algorithm.

• ReLU is better than
sigmoid because it does
not saturate for positive
values and is fast.

• Dying ReLUs: A neuron
dies when its input is
negative for all training
instances.

9

2.2 Nonsaturating Activation
Functions
• Leaky ReLU performs

better than ReLU.

• α between 0.01 and 0.3

10

model = keras.models.Sequential([
 …
 keras.layers.Dense(10, kernel_initializer="he_normal"),
 keras.layers.LeakyReLU(alpha=0.2), # added as a layer
 …
])

2.2 Nonsaturating Activation
Functions
• Exponential linear unit

(ELU) also performs
better than ReLU but is
slower.

• Scaled ELU (SELU)
performs best with
dense and CNN, but
must scale inputs and
use lecun_normal.

11

layer = keras.layers.Dense(10, activation="selu",
 kernel_initializer="lecun_normal")

2.2 Nonsaturating Activation
Functions

• Summary:
• SELU > ELU > leaky ReLU > ReLU > tanh > logistic

• If you cannot use SELU, use ELU.

• For fast response, use leaky ReLU or ReLU.

12

2.3 Batch Normalization

• The techniques in §2.1 and §2.2 can significantly
reduce the vanishing/exploding gradients problems
at the beginning of training, but don’t guarantee
that they won’t come back during training.

• Batch Normalization (BN) zero-centers and
normalizes each layer input using statistics from the
mini batch (> 30).

• Other benefits: Works even without §2.1 and §2.2,
allows using larger LR, and have regularization
effect.

13

2.3 Batch Normalization

• Implementing batch normalization with Keras is easy.

model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=[28, 28]),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(300, activation="elu",
 kernel_initializer="he_normal"),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(100, activation="elu",
 kernel_initializer="he_normal"),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(10, activation="softmax")
])

14

2.4 Gradient Clipping

• Mitigates the exploding gradients problem by
clipping the gradients during backpropagation so
that they never exceed some threshold.

• Use it when you observe that the gradients are
exploding during training. You can track the size of
the gradients using TensorBoard.

optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

15

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
16

3. Reusing Pretrained Layers

• Transfer
Learning: Using
one NN
developed for a
certain task to
solve another
task.

• Useful to shorten
training time or
with small
datasets.

17

Transfer Learning with Keras

Load the ready model

model_A = keras.models.load_model("my_model_A.h5")

Create a new model using all but the last layer

model_B_on_A = keras.models.Sequential(

 model_A.layers[:-1])

model_B_on_A.add(keras.layers.Dense(1,

 activation="sigmoid"))

Freeze loaded layers then compile

for layer in model_B_on_A.layers[:-1]:

 layer.trainable = False

model_B_on_A.compile(loss="binary_crossentropy",

 optimizer="sgd", metrics=["accuracy"])

18

Transfer Learning with Keras

Train the model for a few epochs

history = model_B_on_A.fit(X_train_B, y_train_B,
 epochs=4,

 validation_data=(X_valid_B, y_valid_B))

Unreeze loaded layers

for layer in model_B_on_A.layers[:-1]:

 layer.trainable = True

Compile with small learning rate (defalut = 1e-2)

optimizer = keras.optimizers.SGD(lr=1e-4)

model_B_on_A.compile(loss="binary_crossentropy",

 optimizer=optimizer, metrics=["accuracy"])

19

Transfer Learning with Keras

Train the model for more epochs

history = model_B_on_A.fit(X_train_B, y_train_B,

 epochs=16,

 validation_data=(X_valid_B, y_valid_B))

20

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
21

4. Faster Optimizers

• The SGD optimizer can be made faster using
momentum optimization

22

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

β

4. Faster Optimizers

• Nesterov momentum optimization measures the
gradient of the cost function not at the local
position θ but slightly ahead in the direction of the
momentum, at θ + βm

23

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9,
 nesterov=True)

4. Faster Optimizers

• The adaptive optimizers such as AdaGrad,
RMSProp, Adam, and Nadam scale down the
gradient vector along the steepest dimensions.

24

optimizer = keras.optimizers.RMSprop()
optimizer = keras.optimizers.Adam()

4. Faster Optimizers

• RMSProp, Adam and Nadam often converge fast.
But they can give poor generalization.

• Solution: Use Nesterov accelerated gradient.

25

Class Speed Quality

SGD * ***

SGD with momentum, Nestrov ** ***

Adagrad *** *

RMSProp, Adam, Nadam, AdaMax *** ** or ***

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
26

5. Avoiding Overfitting

• Deep neural networks typically have many
parameters, giving them ability to fit a huge variety
of complex datasets.

• Useful regularization techniques:
• Early stopping

• Batch normalization

• ℓ1 and ℓ2 regularization

• Dropout

27

5.1 ℓ1 and ℓ2 Regularization

• Constrain a neural network’s connection weights.

• ℓ1:

• ℓ2:

layer = keras.layers.Dense(100, activation="elu",

 kernel_initializer="he_normal",

 kernel_regularizer=keras.regularizers.l1(0.01))

The other regularization functions:

keras.regularizers.l2(0.01)

keras.regularizers.l1_l2(l1=0.01, l2=0.01)

28

5.2 Dropout

• Popular technique to improve accuracy.

• At every training step, every neuron (excluding the
output neurons) has a probability p of being
temporarily dropped out.

29

5.2 Dropout

model = keras.models.Sequential([

 keras.layers.Flatten(input_shape=[28, 28]),

 keras.layers.Dropout(rate=0.2),

 keras.layers.Dense(300, activation="elu",

 kernel_initializer="he_normal"),

 keras.layers.Dropout(rate=0.2),

 keras.layers.Dense(100, activation="elu",

 kernel_initializer="he_normal"),

 keras.layers.Dropout(rate=0.2),

 keras.layers.Dense(10, activation="softmax")

])

30

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
31

6. Summary

• Recommended default DNN configuration

32

Hyperparameter Default value

Kernel initializer He initialization

Activation function ELU

Normalization None if shallow; Batch Norm if
deep

Regularization Early stopping (+ℓ2 reg. if needed)

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

6. Summary

• For a simple stack of dense or CNN layers.

33

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

7. Exercise

From Chapter 11, solve exercise:
• 8

34

