
COMPUTER ORGANIZATION AND DESIGN 
The Hardware/Software Interface 

RISC-V 

 Edition 

Chapter 5 

Large and Fast: 

Exploiting Memory 

Hierarchy 

 

Adapted by Prof. Gheith Abandah 



Contents 

5.1 Introduction 

5.2 Memory Technologies 

5.3 The Basics of Caches 

5.4 Measuring and Improving Cache Performance 

5.5 Dependable Memory Hierarchy 

5.11 Redundant Arrays of Inexpensive Disks 

5.6 Virtual Machines 

5.7 Virtual Memory 

5.8 A Common Framework for Memory Hierarchy 

5.9 Using a Finite-State Machine to Control a Simple Cache 

5.10 Cache Coherence 

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies 

5.16 Fallacies and Pitfalls 

5.17 Concluding Remarks 

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3 

Principle of Locality 

 Programs access a small proportion of 

their address space at any time 

 Temporal locality 

 Items accessed recently are likely to be 

accessed again soon 

 e.g., instructions in a loop, induction variables 

 Spatial locality 

 Items near those accessed recently are likely 

to be accessed soon 

 E.g., sequential instruction access, array data 
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Taking Advantage of Locality 

 Memory hierarchy 

 Store everything on disk 

 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory 

 Main memory 

 Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory 

 Cache memory attached to CPU 



Memory Hierarchy 
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Memory Hierarchy Levels 

 Block (aka line): unit of copying 

 May be multiple words 

 If accessed data is present in 

upper level 

 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 

 Miss: block copied from lower level 

 Time taken: miss penalty 

 Miss ratio: misses/accesses 

= 1 – hit ratio 

 Then accessed data supplied from 

upper level 
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Memory Technology (2012) 

 Static RAM (SRAM) 

 0.5ns – 2.5ns, $2000 – $1000 per GB 

 Dynamic RAM (DRAM) 

 50ns – 70ns, $10 – $20 per GB 

 Flash memory 

 5,000ns – 50,000ns, $0.75 – $1.00 per GB 

 Magnetic disk 

 5ms – 20ms, $0.05 – $0.10 per GB 

 Ideal memory 

 Access time of SRAM 

 Capacity and cost/GB of disk 
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SRAM Technology 

 Static RAM 

 6-8 transistors per bit 

 Fast but not dense 

 Often has standby mode 
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DRAM Technology 

 Data stored as a charge in a capacitor 

 Single transistor used to access the charge 

 Must periodically be refreshed 

 Read contents and write back 

 Performed on a DRAM “row” 
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Classic DRAM 
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Classic DRAM 

 

 

 

 

 

 

 

 Low bandwidth 
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Advanced DRAM Organization 

 Access an entire row and save it in a row 

buffer. 

 Fast page mode: supply successive 

words from the row buffer with reduced 

latency 
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Advanced DRAM Organization 

 Synchronous DRAM (SDRAM) has a 

counter that increments the column 

address using a clock signal. 
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Advanced DRAM Organization 

 Double data rate (DDR) SDRAM 

 Transfer on rising and falling clock edges 

 Quad data rate (QDR) SDRAM 

 Separate DDR inputs and outputs 



Micron 1Gb DDR-SDRAM  
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MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet 

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf


Micron 1Gb DDR-SDRAM  
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DRAM Generations 
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DRAM Generations 

0
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Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 



DRAM Performance Factors 

 Row buffer 

 Allows several words to be read and refreshed in 

parallel 

 Synchronous DRAM 

 Allows for consecutive accesses in bursts without 

needing to send each address 

 Improves bandwidth 

 DRAM banking 

 Allows simultaneous access to multiple DRAMs 

 Improves bandwidth 
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Increasing Memory Bandwidth 

 To get 16-byte block: 

 a. One-word wide memory 
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles 

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle 
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Increasing Memory Bandwidth 

 b. 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 c. 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Increasing Memory Bandwidth 

 

 d. DDR-SDRAM 
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles 

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle 
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Flash Storage 

 Nonvolatile semiconductor storage 

 100× – 1000× faster than disk 

 Smaller, lower power, more robust 

 But more $/GB (between disk and DRAM) 
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Flash Types 

 NOR flash: bit cell like a NOR gate 

 Random read/write access 

 Used for instruction memory in embedded systems 

 NAND flash: bit cell like a NAND gate 

 Denser (bits/area), but block-at-a-time access 

 Cheaper per GB 

 Used for USB keys, media storage, … 

 Flash bits wears out after 1000’s of accesses 

 Not suitable for direct RAM or disk replacement 

 Wear leveling: remap data to less used blocks 
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Disk Storage 

 Nonvolatile, rotating magnetic storage 
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Disk Sectors and Access 

 Each sector records 
 Sector ID 

 Data (512 bytes, 4096 bytes proposed) 

 Error correcting code (ECC) 
 Used to hide defects and recording errors 

 Synchronization fields and gaps 

 Access to a sector involves 
 Queuing delay if other accesses are pending 

 Seek: move the heads 

 Rotational latency 

 Data transfer 

 Controller overhead 
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Disk Access Example 

 Given 
 512B sector, 15,000rpm, 4ms average seek 

time, 100MB/s transfer rate, 0.2ms controller 
overhead, idle disk 

 Average read time 
 4ms seek time 

+ ½ / (15,000/60) = 2ms rotational latency 
+ 512 / 100MB/s = 0.005ms transfer time 
+ 0.2ms controller delay 
= 6.2ms 

 If actual average seek time is 1ms 
 Average read time = 3.2ms 
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Disk Access Example 2 

 

 Given 
 15,000rpm, 2MB/cylinder 

 Sustainable peak transfer rate? 
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Disk Performance Issues 

 Manufacturers quote average seek time 

 Based on all possible seeks 

 Locality and OS scheduling lead to smaller actual 

average seek times 

 Smart disk controller allocate physical sectors on 

disk 

 Present logical sector interface to host 

 SCSI, ATA, SATA 

 Disk drives include caches 

 Prefetch sectors in anticipation of access 

 Avoid seek and rotational delay 
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Cache Memory 

 Cache memory 

 The level of the memory hierarchy closest to 

the CPU 

 Given accesses X1, …, Xn–1, Xn 
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 How do we know if 

the data is present? 

 Where do we look? 
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Direct Mapped Cache 

 Location determined by address 

 Direct mapped: only one choice 

 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 

power of 2 

 Use low-order 

address bits 
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Tags and Valid Bits 

 How do we know which particular block is 

stored in a cache location? 

 Store block address as well as the data 

 Actually, only need the high-order bits 

 Called the tag 

 What if there is no data in a location? 

 Valid bit: 1 = present, 0 = not present 

 Initially 0 
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Cache Example 

 8-blocks, 1 word/block, direct mapped 

 Initial state 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 N 

111 N 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Hit 110 

26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 11 Mem[11010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

16 10 000 Miss 000 

3 00 011 Miss 011 

16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 10 Mem[10010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

18 10 010 Miss 010 
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Address Subdivision 
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Example: Larger Block Size 

 64 blocks, 16 bytes/block 

 To what block number does address 1200 

map? 

 Block address = 1200/16 = 75 

 Block number = 75 modulo 64 = 11 

Tag Index Offset 

0 3 4 9 10 63 

4 bits 6 bits 22 bits 
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Block Size Considerations 

 Larger blocks should reduce miss rate 

 Due to spatial locality 

 But in a fixed-sized cache 

 Larger blocks  fewer of them 

 More competition  increased miss rate 

 Larger blocks  pollution 

 Larger miss penalty 

 Can override benefit of reduced miss rate 

 Early restart and critical-word-first can help 
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Block Size Considerations 
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Cache Misses 

 On cache hit, CPU proceeds normally 

 On cache miss 

 Stall the CPU pipeline 

 Fetch block from next level of hierarchy 

 Instruction cache miss 

 Restart instruction fetch 

 Data cache miss 

 Complete data access 



Writing to the Cache 
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Write-Through 

 On data-write hit, could just update the block in 
cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 

 But makes writes take longer 
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 

 CPU continues immediately 
 Only stalls on write if write buffer is already full 
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Write-Back 

 Alternative: On data-write hit, just update 

the block in cache 

 Keep track of whether each block is dirty 

 When a dirty block is replaced 

 Write it back to memory 

 Can use a write buffer to allow replacing block 

to be read first 
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Write Allocation 

 What should happen on a write miss? 

 Alternatives for write-through 

 Allocate on miss: fetch the block 

 Write around: don’t fetch the block 

 Since programs often write a whole block before 

reading it (e.g., initialization) 

 For write-back 

 Usually fetch the block 
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Example: Intrinsity FastMATH 

 Embedded MIPS processor 

 12-stage pipeline 

 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 

 Each 16KB: 256 blocks × 16 words/block 

 D-cache: write-through or write-back 

 SPEC2000 miss rates 

 I-cache: 0.4% 

 D-cache: 11.4% 

 Weighted average: 3.2% 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51 

Example: Intrinsity FastMATH 



Contents 

5.1 Introduction 

5.2 Memory Technologies 

5.3 The Basics of Caches 

5.4 Measuring and Improving Cache Performance 

 Measuring Cache Performance 

 Memory Average Access Time 

 Associative Caches 

 Multi-level Caches 

 Interactions with Advanced CPUs 

 Interactions with Software 

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53 

Measuring Cache Performance 

 Components of CPU time 
 Program execution cycles 

 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 
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Cache Performance Example 

 Given 
 I-cache miss rate = 2% 

 D-cache miss rate = 4% 

 Miss penalty = 100 cycles 

 Base CPI (ideal cache) = 2 

 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 

 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 

 Hit time is also important for performance 

 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 

 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 

 2 cycles per instruction 
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Performance Summary 

 When CPU performance increased 

 Miss penalty becomes more significant 

 Decreasing base CPI 

 Greater proportion of time spent on memory 

stalls 

 Increasing clock rate 

 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 

evaluating system performance 
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Associative Caches 

 Fully associative 

 Allow a given block to go in any cache entry 

 Requires all entries to be searched at once 

 Comparator per entry (expensive) 

 n-way set associative 

 Each set contains n entries 

 Block number determines which set 

 (Block number) modulo (#Sets in cache) 

 Search all entries in a given set at once 

 n comparators (less expensive) 
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Associative Cache Example 
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Spectrum of Associativity 

 For a cache with 8 entries 
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Associativity Example 

 Compare 4-block caches 

 Direct mapped, 2-way set associative, 

fully associative 

 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 

Block 

address 

Cache 

index 

Hit/miss Cache content after access 

0 1 2 3 

0 0 miss Mem[0] 

8 0 miss Mem[8] 

0 0 miss Mem[0] 

6 2 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 
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Associativity Example 

 2-way set associative 
Block 

address 

Cache 

index 

Hit/miss Cache content after access 

Set 0 Set 1 

0 0 miss Mem[0] 

8 0 miss Mem[0] Mem[8] 

0 0 hit Mem[0] Mem[8] 

6 0 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 

 Fully associative 
Block 

address 

Hit/miss Cache content after access 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[8] Mem[6] 

8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 

 Increased associativity decreases miss 

rate 

 But with diminishing returns 

 Simulation of a system with 64KB 

D-cache, 16-word blocks, SPEC2000 

 1-way: 10.3% 

 2-way: 8.6% 

 4-way: 8.3% 

 8-way: 8.1% 
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Set Associative Cache Organization 
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Replacement Policy 

 Direct mapped: no choice 

 Set associative 
 Prefer non-valid entry, if there is one 

 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too hard 
beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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Multilevel Caches 

 Primary cache attached to CPU 

 Small, but fast 

 Level-2 cache services misses from 

primary cache 

 Larger, slower, but still faster than main 

memory 

 Main memory services L-2 cache misses 

 Some high-end systems include L-3 cache 
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Multilevel Cache Example 

 Given 

 CPU base CPI = 1, clock rate = 4GHz 

 Miss rate/instruction = 2% 

 Main memory access time = 100ns 

 With just primary cache 

 Miss penalty = 100ns/0.25ns = 400 cycles 

 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 

 Now add L-2 cache 

 Access time = 5ns 

 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 

 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 

 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9 

 Performance ratio = 9/3.9 = 2.3 
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Multilevel Cache Considerations 

 Primary cache 

 Focus on minimal hit time 

 L-2 cache 

 Focus on low miss rate to avoid main memory 

access 

 Hit time has less overall impact 

 Results 

 L-1 cache usually smaller than a single cache 

 L-1 block size smaller than L-2 block size 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute 

instructions during cache miss 

 Pending store stays in load/store unit 

 Dependent instructions wait in reservation 

stations 

 Independent instructions continue 

 Effect of miss depends on program data 

flow 

 Much harder to analyse 

 Use system simulation 
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Interactions with Software 

 Misses depend on 

memory access 

patterns 

 Algorithm behavior 

 Compiler 

optimization for 

memory access 
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Dependability 

 Fault: failure of a 

component 

 May or may not lead 

to system failure 

Service accomplishment 

Service delivered 

as specified 

Service interruption 

Deviation from 

specified service 

Failure Restoration 
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Dependability Measures 

 Reliability: mean time to failure (MTTF) 

 Service interruption: mean time to repair (MTTR) 

 Mean time between failures 

 MTBF = MTTF + MTTR 

 Availability = MTTF / (MTTF + MTTR) 

 Improving Availability 

 Increase MTTF: fault avoidance, fault tolerance, fault 

forecasting 

 Reduce MTTR: improved tools and processes for 

diagnosis and repair 



The Hamming SEC Code 

 Hamming distance 

 Number of bits that are different between two 

bit patterns 

 Minimum distance = 2 provides single bit 

error detection 

 E.g. parity code 

 Minimum distance = 3 provides single 

error correction, 2 bit error detection 
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Encoding SEC 

 To calculate Hamming code: 

 Number bits from 1 on the left 

 All bit positions that are a power 2 are parity 

bits 

 Each parity bit checks certain data bits: 
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Decoding SEC 

 Value of parity bits indicates which bits are 

in error 

 Use numbering from encoding procedure 

 E.g. 

 Parity bits = 0000 indicates no error 

 Parity bits = 1010 indicates bit 10 was flipped 

 Example: 

 What will be stored for 1001 1010? 

 If you read 0111 0010 1110, is there error? 

Correct it. 
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SEC/DED Code 

 Add an additional parity bit for the whole word 

(pn) 

 Make Hamming distance = 4 

 Decoding: 

 Let H = SEC parity bits 

 H = 0, pn even, no error 

 H ≠ 0, pn odd, correctable single bit error 

 H = 0, pn odd, error in pn bit 

 H ≠ 0, pn even, double error occurred 

 ECC DRAM uses SEC/DED with 8 bits 

protecting each 64 bits 
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RAID 

 Redundant Array of Inexpensive 
(Independent) Disks 
 Use multiple smaller disks (c.f. one large disk) 

 Parallelism improves performance 

 Plus extra disk(s) for redundant data storage 

 Provides fault tolerant storage system 
 Especially if failed disks can be “hot swapped” 

 RAID 0 
 No  redundancy (“AID”?) 

 Just stripe data over multiple disks 

 But it does improve performance 
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RAID 1 & 2 

 RAID 1: Mirroring 

 N + N disks, replicate data 

 Write data to both data disk and mirror disk 

 On disk failure, read from mirror 

 RAID 2: Error correcting code (ECC) 

 N + E disks (e.g., 10 + 4) 

 Split data at bit level across N disks 

 Generate E-bit ECC 

 Too complex, not used in practice 
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RAID 3: Bit-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at byte level 

 Redundant disk stores parity 

 Read access 

 Read all disks 

 Write access 

 Generate new parity and update all disks 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 4: Block-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at block level 

 Redundant disk stores parity for a group of blocks 

 Read access 

 Read only the disk holding the required block 

 Write access 

 Just read disk containing modified block, and parity disk 

 Calculate new parity, update data disk and parity disk 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 3 vs RAID 4 
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RAID 5: Distributed Parity 

 N + 1 disks 
 Like RAID 4, but parity blocks distributed 

across disks 
 Avoids parity disk being a bottleneck 

 Widely used 
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RAID 6: P + Q Redundancy 

 N + 2 disks 

 Like RAID 5, but two lots of parity 

 Greater fault tolerance through more 

redundancy 

 Multiple RAID 

 More advanced systems give similar fault 

tolerance with better performance 

 Example RAID 51 
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RAID Summary 

 

 RAID can improve performance and 

availability 

 High availability requires hot swapping 

 Assumes independent disk failures 

 Too bad if the building burns down! 
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Virtual Machines 

 Host computer emulates guest operating system 

and machine resources 

 Improved isolation of multiple guests 

 Avoids security and reliability problems 

 Aids sharing of resources 

 Virtualization has some performance impact 

 Feasible with modern high-performance comptuers 

 Examples 

 IBM VM/370 (1970s technology!) 

 VMWare 

 Microsoft Virtual PC 
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Virtual Machines 
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Virtual Machine Monitor 

 Maps virtual resources to physical 
resources 

 Memory, I/O devices, CPUs 

 Guest code runs on native machine in user 
mode 

 Traps to VMM on privileged instructions and 
access to protected resources 

 Guest OS may be different from host OS 

 VMM handles real I/O devices 

 Emulates generic virtual I/O devices for guest 
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Instruction Set Support 

 User and System modes 

 Privileged instructions only available in 
system mode 

 Trap to system if executed in user mode 

 All physical resources only accessible 
using privileged instructions 

 Including page tables, interrupt controls, I/O 
registers 
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Virtual Memory 

 Use main memory as a “cache” for 
secondary (disk) storage 
 Managed jointly by CPU hardware and the 

operating system (OS) 

 Programs share main memory 
 Each gets a private virtual address space 

holding its frequently used code and data 

 Protected from other programs 

 CPU and OS translate virtual addresses to 
physical addresses 
 VM “block” is called a page 

 VM translation “miss” is called a page fault 
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Address Translation 

 Fixed-size pages (e.g., 4K) 
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Page Fault Penalty 

 On page fault, the page must be fetched 

from disk 

 Takes millions of clock cycles 

 Handled by OS code 

 Try to minimize page fault rate 

 Fully associative placement 

 Smart replacement algorithms 
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Page Tables 

 Stores placement information 

 Array of page table entries, indexed by virtual 
page number 

 Page table register in CPU points to page 
table in physical memory 

 If page is present in memory 

 PTE stores the physical page number 

 Plus other status bits (referenced, dirty, …) 

 If page is not present 

 PTE can refer to location in swap space on 
disk 
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Translation Using a Page Table 
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Mapping Pages to Storage 
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Replacement and Writes 

 To reduce page fault rate, prefer least-
recently used (LRU) replacement 
 Reference bit (aka use bit) in PTE set to 1 on 

access to page 

 Periodically cleared to 0 by OS 

 A page with reference bit = 0 has not been 
used recently 

 Disk writes take millions of cycles 
 Block at once, not individual locations 

 Write through is impractical 

 Use write-back 

 Dirty bit in PTE set when page is written 
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Fast Translation Using a TLB 

 Address translation would appear to require 

extra memory references 

 One to access the PTE 

 Then the actual memory access 

 But access to page tables has good locality 

 So use a fast cache of PTEs within the CPU 

 Called a Translation Look-aside Buffer (TLB) 

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate 

 Misses could be handled by hardware or software 
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Fast Translation Using a TLB 
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TLB Misses 

 If page is in memory 

 Load the PTE from memory and retry 

 Could be handled in hardware 
 Can get complex for more complicated page table 

structures 

 Or in software 
 Raise a special exception, with optimized handler 

 If page is not in memory (page fault) 

 OS handles fetching the page and updating 
the page table 

 Then restart the faulting instruction 
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TLB Miss Handler 

 TLB miss indicates 

 Page present, but PTE not in TLB 

 Page not preset 

 Must recognize TLB miss before 

destination register overwritten 

 Raise exception 

 Handler copies PTE from memory to TLB 

 Then restarts instruction 

 If page not present, page fault will occur 
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Page Fault Handler 

 Use faulting virtual address to find PTE 

 Locate page on disk 

 Choose page to replace 

 If dirty, write to disk first 

 Read page into memory and update page 

table 

 Make process runnable again 

 Restart from faulting instruction 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106 

TLB and Cache Interaction 

 If cache tag uses 

physical address 

 Need to translate 

before cache lookup 

 Alternative: use virtual 

address tag 

 Complications due to 

aliasing 

 Different virtual 

addresses for shared 

physical address 
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Memory Protection 

 Different tasks can share parts of their 

virtual address spaces 

 But need to protect against errant access 

 Requires OS assistance 

 Hardware support for OS protection 

 Privileged supervisor mode (aka kernel mode) 

 Privileged instructions 

 Page tables and other state information only 

accessible in supervisor mode 

 System call exception (e.g., ecall in RISC-V) 
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The Memory Hierarchy 

 Common principles apply at all levels of 

the memory hierarchy 

 Based on notions of caching 

 At each level in the hierarchy 

 Block placement 

 Finding a block 

 Replacement on a miss 

 Write policy 
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Block Placement 

 Determined by associativity 

 Direct mapped (1-way associative) 

 One choice for placement 

 n-way set associative 

 n choices within a set 

 Fully associative 

 Any location 

 Higher associativity reduces miss rate 

 Increases complexity, cost, and access time 
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Finding a Block 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 

 Benefit in reduced miss rate 

Associativity Location method Tag comparisons 

Direct mapped Index 1 

n-way set 

associative 

Set index, then search 

entries within the set 

n 

Fully associative Search all entries #entries 

Full lookup table 0 
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Replacement 

 Choice of entry to replace on a miss 

 Least recently used (LRU) 

 Complex and costly hardware for high associativity 

 Random 

 Close to LRU, easier to implement 

 Virtual memory 

 LRU approximation with hardware support 
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Write Policy 

 Write-through 
 Update both upper and lower levels 

 Simplifies replacement, but may require write 
buffer 

 Write-back 
 Update upper level only 

 Update lower level when block is replaced 

 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk write 

latency  
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Sources of Misses 

 Compulsory misses (aka cold start misses) 

 First access to a block 

 Capacity misses 

 Due to finite cache size 

 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 

 In a non-fully associative cache 

 Due to competition for entries in a set 

 Would not occur in a fully associative cache of 
the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative performance 

effect 

Increase cache size Decrease capacity 

misses 

May increase access 

time 

Increase associativity Decrease conflict 

misses 

May increase access 

time 

Increase block size Decrease compulsory 

misses 

Increases miss 

penalty. For very large 

block size, may 

increase miss rate 

due to pollution. 



Data Cache Miss Rate 
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Cache Control 

 Example cache characteristics 

 Direct-mapped, write-back, write allocate 

 Block size: 4 words (16 bytes) 

 Cache size: 16 KB (1024 blocks) 

 32-bit byte addresses 

 Valid bit and dirty bit per block 

 Blocking cache 

 CPU waits until access is complete 
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Tag Index Offset 

0 3 4 13 14 31 

4 bits 10 bits 18 bits 
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Interface Signals 

Cache CPU Memory 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

32 

32 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

128 

128 

Multiple cycles 

per access 
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Finite State Machines 

 Use an FSM to 
sequence control steps 

 Set of states, transition 
on each clock edge 
 State values are binary 

encoded 

 Current state stored in a 
register 

 Next state 
= fn (current state, 
  current inputs) 

 Control output signals 
= fo (current state) 
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Cache Controller FSM 

Could 

partition into 

separate 

states to 

reduce clock 

cycle time 
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Cache Coherence Problem 

 Suppose two CPU cores share a physical 
address space 
 Write-through caches 
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Time 

step 

Event CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 
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Coherence Defined 

 Informally: Reads return most recently 
written value 

 Formally: 

 P writes X; P reads X (no intervening writes) 
 read returns written value 

 P1 writes X; P2 reads X (sufficiently later) 
 read returns written value 
 c.f. CPU B reading X after step 3 in example 

 P1 writes X, P2 writes X 
 all processors see writes in the same order 
 End up with the same final value for X 
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Cache Coherence Protocols 

 Operations performed by caches in 
multiprocessors to ensure coherence 

 Migration of data to local caches 
 Reduces bandwidth for shared memory 

 Replication of read-shared data 
 Reduces contention for access 

 Snooping protocols 

 Each cache monitors bus reads/writes 

 Directory-based protocols 

 Caches and memory record sharing status of 
blocks in a directory 
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Invalidating Snooping Protocols 

 Cache gets exclusive access to a block 
when it is to be written 

 Broadcasts an invalidate message on the bus 

 Subsequent read in another cache misses 
 Owning cache supplies updated value 

CPU activity Bus activity CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 

CPU A reads X Cache miss for X 0 0 

CPU B reads X Cache miss for X 0 0 0 

CPU A writes 1 to X Invalidate for X 1 0 

CPU B read X Cache miss for X 1 1 1 
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Memory Consistency 

 When are writes seen by other processors 
 “Seen” means a read returns the written value 

 Can’t be instantaneously 

 Assumptions 
 A write completes only when all processors have seen 

it 

 A processor does not reorder writes with other 
accesses 

 Consequence 
 P writes X then writes Y 
 all processors that see new Y also see new X 

 Processors can reorder reads, but not writes 
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Multilevel On-Chip Caches 
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2-Level TLB Organization 
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Supporting Multiple Issue 

 Both have multi-banked caches that allow 

multiple accesses per cycle assuming no 

bank conflicts 

 Other optimizations 

 Return requested word first 

 Non-blocking cache 

 Hit under miss 

 Miss under miss 

 Data prefetching 
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Pitfalls 

 Byte vs. word addressing 

 Example: 32-byte direct-mapped cache, 

4-byte blocks 

 Byte 36 maps to block 1 

 Word 36 maps to block 4 

 Ignoring memory system effects when 

writing or generating code 

 Example: iterating over rows vs. columns of 

arrays 

 Large strides result in poor locality 
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Pitfalls 

 In multiprocessor with shared L2 or L3 

cache 

 Less associativity than cores results in conflict 

misses 

 More cores  need to increase associativity 

 Using AMAT to evaluate performance of 

out-of-order processors 

 Ignores effect of non-blocked accesses 

 Instead, evaluate performance by simulation 
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Pitfalls 

 Extending address range using segments 

 E.g., Intel 80286 

 But a segment is not always big enough 

 Makes address arithmetic complicated 

 Implementing a VMM on an ISA not 

designed for virtualization 

 E.g., non-privileged instructions accessing 

hardware resources 

 Either extend ISA, or require guest OS not to 

use problematic instructions 
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Concluding Remarks 

 Fast memories are small, large memories are 
slow 
 We really want fast, large memories  

 Caching gives this illusion  

 Principle of locality 
 Programs use a small part of their memory space 

frequently 

 Memory hierarchy 
 L1 cache  L2 cache  …  DRAM memory 
 disk 

 Memory system design is critical for 
multiprocessors 

§
5
.1

7
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s
 


