
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 5

Large and Fast:

Exploiting Memory

Hierarchy

Adapted by Prof. Gheith Abandah

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of

their address space at any time

 Temporal locality

 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

 Cache memory attached to CPU

Memory Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from

upper level

Contents

5.1 Introduction

5.2 Memory Technologies

 Introduction

 SRAM

 DRAM

 Flash

 Disk Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Memory Technology (2012)

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $1000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $10 – $20 per GB

 Flash memory

 5,000ns – 50,000ns, $0.75 – $1.00 per GB

 Magnetic disk

 5ms – 20ms, $0.05 – $0.10 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.2

 M
e
m

o
ry

 T
e
c
h
n
o
lo

g
ie

s

SRAM Technology

 Static RAM

 6-8 transistors per bit

 Fast but not dense

 Often has standby mode

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Technology

 Data stored as a charge in a capacitor

 Single transistor used to access the charge

 Must periodically be refreshed

 Read contents and write back

 Performed on a DRAM “row”

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Classic DRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Classic DRAM

 Low bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Advanced DRAM Organization

 Access an entire row and save it in a row

buffer.

 Fast page mode: supply successive

words from the row buffer with reduced

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Advanced DRAM Organization

 Synchronous DRAM (SDRAM) has a

counter that increments the column

address using a clock signal.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Advanced DRAM Organization

 Double data rate (DDR) SDRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) SDRAM

 Separate DDR inputs and outputs

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

DRAM Generations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

DRAM Performance Factors

 Row buffer

 Allows several words to be read and refreshed in

parallel

 Synchronous DRAM

 Allows for consecutive accesses in bursts without

needing to send each address

 Improves bandwidth

 DRAM banking

 Allows simultaneous access to multiple DRAMs

 Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Increasing Memory Bandwidth

 To get 16-byte block:

 a. One-word wide memory
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Increasing Memory Bandwidth

 b. 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 c. 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Increasing Memory Bandwidth

 d. DDR-SDRAM
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle

Chapter 6 — Storage and Other I/O Topics — 24

Flash Storage

 Nonvolatile semiconductor storage

 100× – 1000× faster than disk

 Smaller, lower power, more robust

 But more $/GB (between disk and DRAM)

Chapter 6 — Storage and Other I/O Topics — 25

Flash Types

 NOR flash: bit cell like a NOR gate

 Random read/write access

 Used for instruction memory in embedded systems

 NAND flash: bit cell like a NAND gate

 Denser (bits/area), but block-at-a-time access

 Cheaper per GB

 Used for USB keys, media storage, …

 Flash bits wears out after 1000’s of accesses

 Not suitable for direct RAM or disk replacement

 Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other I/O Topics — 26

Disk Storage

 Nonvolatile, rotating magnetic storage

Chapter 6 — Storage and Other I/O Topics — 27

Disk Sectors and Access

 Each sector records
 Sector ID

 Data (512 bytes, 4096 bytes proposed)

 Error correcting code (ECC)
 Used to hide defects and recording errors

 Synchronization fields and gaps

 Access to a sector involves
 Queuing delay if other accesses are pending

 Seek: move the heads

 Rotational latency

 Data transfer

 Controller overhead

Chapter 6 — Storage and Other I/O Topics — 28

Disk Access Example

 Given
 512B sector, 15,000rpm, 4ms average seek

time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

 Average read time
 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

 If actual average seek time is 1ms
 Average read time = 3.2ms

Chapter 6 — Storage and Other I/O Topics — 29

Disk Access Example 2

 Given
 15,000rpm, 2MB/cylinder

 Sustainable peak transfer rate?

Chapter 6 — Storage and Other I/O Topics — 30

Disk Performance Issues

 Manufacturers quote average seek time

 Based on all possible seeks

 Locality and OS scheduling lead to smaller actual

average seek times

 Smart disk controller allocate physical sectors on

disk

 Present logical sector interface to host

 SCSI, ATA, SATA

 Disk drives include caches

 Prefetch sectors in anticipation of access

 Avoid seek and rotational delay

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

 Direct Mapped Cache

 Cache Example

 Larger Block Sizes

 Writing to the Cache

 Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.3

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if

the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a

power of 2

 Use low-order

address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Tags and Valid Bits

 How do we know which particular block is

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

0 3 4 9 10 63

4 bits 6 bits 22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Block Size Considerations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Writing to the Cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Write-Back

 Alternative: On data-write hit, just update

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Allocate on miss: fetch the block

 Write around: don’t fetch the block

 Since programs often write a whole block before

reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Example: Intrinsity FastMATH

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

 Measuring Cache Performance

 Memory Average Access Time

 Associative Caches

 Multi-level Caches

 Interactions with Advanced CPUs

 Interactions with Software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.4

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Associativity Example

 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

How Much Associativity

 Increased associativity decreases miss

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from

primary cache

 Larger, slower, but still faster than main

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9

 Performance ratio = 9/3.9 = 2.3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Interactions with Advanced CPUs

 Out-of-order CPUs can execute

instructions during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation

stations

 Independent instructions continue

 Effect of miss depends on program data

flow

 Much harder to analyse

 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Interactions with Software

 Misses depend on

memory access

patterns

 Algorithm behavior

 Compiler

optimization for

memory access

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

 Dependability

 Error Correction Codes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Chapter 6 — Storage and Other I/O Topics — 72

Dependability

 Fault: failure of a

component

 May or may not lead

to system failure

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

Failure Restoration

§
5
.5

 D
e
p
e
n
d
a
b
le

 M
e
m

o
ry

 H
ie

ra
rc

h
y

Chapter 6 — Storage and Other I/O Topics — 73

Dependability Measures

 Reliability: mean time to failure (MTTF)

 Service interruption: mean time to repair (MTTR)

 Mean time between failures

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR)

 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault

forecasting

 Reduce MTTR: improved tools and processes for

diagnosis and repair

The Hamming SEC Code

 Hamming distance

 Number of bits that are different between two

bit patterns

 Minimum distance = 2 provides single bit

error detection

 E.g. parity code

 Minimum distance = 3 provides single

error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Encoding SEC

 To calculate Hamming code:

 Number bits from 1 on the left

 All bit positions that are a power 2 are parity

bits

 Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Decoding SEC

 Value of parity bits indicates which bits are

in error

 Use numbering from encoding procedure

 E.g.

 Parity bits = 0000 indicates no error

 Parity bits = 1010 indicates bit 10 was flipped

 Example:

 What will be stored for 1001 1010?

 If you read 0111 0010 1110, is there error?

Correct it.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

SEC/DED Code

 Add an additional parity bit for the whole word

(pn)

 Make Hamming distance = 4

 Decoding:

 Let H = SEC parity bits

 H = 0, pn even, no error

 H ≠ 0, pn odd, correctable single bit error

 H = 0, pn odd, error in pn bit

 H ≠ 0, pn even, double error occurred

 ECC DRAM uses SEC/DED with 8 bits

protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Chapter 6 — Storage and Other I/O Topics — 79

RAID

 Redundant Array of Inexpensive
(Independent) Disks
 Use multiple smaller disks (c.f. one large disk)

 Parallelism improves performance

 Plus extra disk(s) for redundant data storage

 Provides fault tolerant storage system
 Especially if failed disks can be “hot swapped”

 RAID 0
 No redundancy (“AID”?)

 Just stripe data over multiple disks

 But it does improve performance

Chapter 6 — Storage and Other I/O Topics — 80

RAID 1 & 2

 RAID 1: Mirroring

 N + N disks, replicate data

 Write data to both data disk and mirror disk

 On disk failure, read from mirror

 RAID 2: Error correcting code (ECC)

 N + E disks (e.g., 10 + 4)

 Split data at bit level across N disks

 Generate E-bit ECC

 Too complex, not used in practice

Chapter 6 — Storage and Other I/O Topics — 81

RAID 3: Bit-Interleaved Parity

 N + 1 disks

 Data striped across N disks at byte level

 Redundant disk stores parity

 Read access

 Read all disks

 Write access

 Generate new parity and update all disks

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 82

RAID 4: Block-Interleaved Parity

 N + 1 disks

 Data striped across N disks at block level

 Redundant disk stores parity for a group of blocks

 Read access

 Read only the disk holding the required block

 Write access

 Just read disk containing modified block, and parity disk

 Calculate new parity, update data disk and parity disk

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 83

RAID 3 vs RAID 4

Chapter 6 — Storage and Other I/O Topics — 84

RAID 5: Distributed Parity

 N + 1 disks
 Like RAID 4, but parity blocks distributed

across disks
 Avoids parity disk being a bottleneck

 Widely used

Chapter 6 — Storage and Other I/O Topics — 85

RAID 6: P + Q Redundancy

 N + 2 disks

 Like RAID 5, but two lots of parity

 Greater fault tolerance through more

redundancy

 Multiple RAID

 More advanced systems give similar fault

tolerance with better performance

 Example RAID 51

Chapter 6 — Storage and Other I/O Topics — 86

RAID Summary

 RAID can improve performance and

availability

 High availability requires hot swapping

 Assumes independent disk failures

 Too bad if the building burns down!

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Virtual Machines

 Host computer emulates guest operating system

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Virtual Machines
§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Virtual Machine Monitor

 Maps virtual resources to physical
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user
mode

 Traps to VMM on privileged instructions and
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Instruction Set Support

 User and System modes

 Privileged instructions only available in
system mode

 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions

 Including page tables, interrupt controls, I/O
registers

Contents

…

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

 Introduction

 Page Tables

 Fast Translation Using a TLB

 Memory Protection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Sharing the Physical Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Address Translation

 Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Translation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before

destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 105

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page

table

 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 107

Memory Protection

 Different tasks can share parts of their

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only

accessible in supervisor mode

 System call exception (e.g., ecall in RISC-V)

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 108

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 109

The Memory Hierarchy

 Common principles apply at all levels of

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.8

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 110

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 112

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113

Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 114

Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 115

Cache Design Trade-offs

Design change Effect on miss rate Negative performance

effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Data Cache Miss Rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 116

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 117

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 118

Cache Control

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete

§
5
.9

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

0 3 4 13 14 31

4 bits 10 bits 18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 119

Interface Signals

Cache CPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120

Finite State Machines

 Use an FSM to
sequence control steps

 Set of states, transition
on each clock edge
 State values are binary

encoded

 Current state stored in a
register

 Next state
= fn (current state,
 current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 121

Cache Controller FSM

Could

partition into

separate

states to

reduce clock

cycle time

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 122

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 123

Cache Coherence Problem

 Suppose two CPU cores share a physical
address space
 Write-through caches

§
5
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 124

Coherence Defined

 Informally: Reads return most recently
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 125

Cache Coherence Protocols

 Operations performed by caches in
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 126

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 127

Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it

 A processor does not reorder writes with other
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 128

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 129

Multilevel On-Chip Caches
§
5
.1

3
 T

h
e
 A

R
M

 C
o
rte

x
-A

5
3
 a

n
d
 In

te
l C

o
re

 i7
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 130

2-Level TLB Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 131

Supporting Multiple Issue

 Both have multi-banked caches that allow

multiple accesses per cycle assuming no

bank conflicts

 Other optimizations

 Return requested word first

 Non-blocking cache

 Hit under miss

 Miss under miss

 Data prefetching

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 132

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 133

Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when

writing or generating code

 Example: iterating over rows vs. columns of

arrays

 Large strides result in poor locality

§
5
.1

6
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 134

Pitfalls

 In multiprocessor with shared L2 or L3

cache

 Less associativity than cores results in conflict

misses

 More cores need to increase associativity

 Using AMAT to evaluate performance of

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135

Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not

designed for virtualization

 E.g., non-privileged instructions accessing

hardware resources

 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 136

Concluding Remarks

 Fast memories are small, large memories are
slow
 We really want fast, large memories

 Caching gives this illusion

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache L2 cache … DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§
5
.1

7
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

