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k-Nearest Neighbors

• Find a predefined number of training samples (k) 
closest in distance to the new point and predict the 
label from them or regression or classification.

• The number of samples can be a user-defined 
constant (k-nearest neighbor learning), or vary 
based on the local density of points (radius-based
neighbor learning).

• The distance can be any metric measure: standard 
Euclidean distance is the most common choice.

• Reference: https://scikit-
learn.org/stable/modules/neighbors.html
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Nearest Neighbors Classification

class sklearn.neighbors.KNeighborsClassifier( 
n_neighbors=5, weights='uniform', … )

• Weights can be: uniform: All points in each 
neighborhood are weighted equally, and distance: 
Weight points by the inverse of their distance.

• Example:
from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()

knn_clf.fit(X_train, y_train)
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Nearest Neighbors Regression

class sklearn.neighbors.KNeighborsRegressor( 
n_neighbors=5, weights='uniform', … )

• The label assigned to a query point is computed 
based on the mean of the labels of its nearest 
neighbors.

• Example:
from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(n_neighbors=3)

model.fit(X, y)
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Support Vector Machine (SVM)

• Very powerful and versatile Machine Learning 
model, capable of performing linear or nonlinear 
classification, regression, and outlier detection.

• Well suited for classification of complex but small-
or medium-sized datasets.

• SVM gives large margin classification.
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Linear SVM Classification

• The decision boundary is fully determined by the 
instances located on the edge. These instances are 
called the support vectors.

• SVMs are sensitive to the feature scales.

8



Soft Margin Classification

• Hard margin classification cannot handle linearly 
inseparable classes and is sensitive to outliers.

• Soft margin classification finds a balance between 
keeping the margin as large as possible and limiting 
the margin violations.
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Soft Margin Classification

• You can control the number of violations using the 
C hyperparameter.

• If your SVM model is overfitting, you can try 
regularizing it by reducing C.
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Iris Dataset
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A famous dataset that contains 
the sepal and petal length and 
width of 150 iris flowers of 
three different species: Setosa, 
Versicolor, and Virginica.



SVM Classification Example

import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica
svm_clf = Pipeline([

("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),

])
svm_clf.fit(X, y)

>>> svm_clf.predict([[5.5, 1.7]])
array([1.])
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Used for maximum-margin 
classification.



Nonlinear SVM Classification

• The SVM class supports nonlinear classification 
using the kernel option.
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Controls how much the model is 
influenced by high-degree polynomials 

versus low-degree



Gaussian Radial Basis Function 

• The Gaussian RBF can be used to find similarity 
features (x2 and x3 ) of the one-dimensional dataset 
with two landmarks to it at x1 = –2 and x1 = 1
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Gaussian RBF Kernel

• Is popular with SVM to solve nonlinear problems.

• Transforms a training set with m instances and n
features to m instances and m features.

• Gamma and C are used for regularization with 
smaller values.
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Gaussian RBF Kernel
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Linear SVM Regression

• Fits as many instances as possible on the margin 
while limiting margin violations. The width of the 
street is controlled by a hyperparameter ϵ.
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Nonlinear SVM Regression
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SVM Conclusion

• The LinearSVC has complexity of O(m × n).

• The SVC time complexity is usually between       
O(m2 × n) and O(m3 × n).

• This algorithm is perfect for complex but small or 
medium training sets. However, it scales well with 
the number of features.

19



Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

20



Decision Trees

• Decision Trees are versatile Machine Learning 
algorithms that can perform both classification and 
regression tasks, and even multioutput tasks.

• They are very powerful algorithms, capable of 
fitting complex datasets.

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)
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Visualizing a Decision Tree
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Regularization Hyperparameters

• Increase min_* or decrease max_*: max_depth=None, 
min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, 
max_features=None, max_leaf_nodes=None
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Decision Trees Regression

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X, y)
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Ensemble Learning and Random 
Forests
• A group of predictors is called an ensemble.

• You can train a group of Decision Tree classifiers, 
each on a different random subset of the training 
set.

• To make predictions, obtain the predictions of all 
individual trees, then predict the class that gets the 
most votes.

• Such an ensemble of Decision Trees is called a 
Random Forest.
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Voting Classifiers

• If each classifier is a weak learner (meaning it does 
only slightly better than random guessing), the 
ensemble can be a strong learner (achieving high 
accuracy).
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Scikit-Learn Voting Classifier 1/2
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voting='soft' predict the class with the
highest class probability



Scikit-Learn Voting Classifier 2/2
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Bagging and Pasting

• Use the same training algorithm for every predictor, 
but train them on different random subsets of the 
training set.

• When sampling is performed with replacement, this 
method is called bagging (short for bootstrap 
aggregating).

• When sampling is performed without replacement, it is 
called pasting.

• The aggregation function is the most frequent 
prediction (hard voting) for classification, or the 
average for regression.
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Bagging and Pasting

31

with replacement and 
use all available cores



Random Forests

• An ensemble of Decision Trees trained via the 
bagging with max_samples set to the size of the 
training set, and choosing the best random splits.

• Equivalent to:
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Exercises

1. Train an SVM classifier on the MNIST dataset. 
Since SVM classifiers are binary classifiers, you 
will need to use one-versus-all to classify all 10 
digits. You may want to tune the 
hyperparameters using small validation sets to 
speed up the process. What accuracy can you 
reach?
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Exercises

2. Train and fine-tune a Decision Tree for the moons 
dataset.

a) Generate a moons dataset using 
make_moons(n_samples=10000, noise=0.4).

b) Split it into a training set and a test set using 
train_test_split().

c) Use grid search with cross-validation (with the help of the 
GridSearchCV class) to find good hyperparameter values for 
a DecisionTreeClassifier. Hint: try various values for 
max_leaf_nodes.

d) Train it on the full training set using these hyperparameters, 
and measure your model’s performance on the test set. You 
should get roughly 85% to 87% accuracy.
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Exercises

3. Load the MNIST data and split it into a training 
set, a validation set, and a test set (e.g., use 
50,000 instances for training, 10,000 for 
validation, and 10,000 for testing). Then train 
various classifiers, such as a Random Forest 
classifier, an Extra-Trees classifier, and an SVM. 
Next, try to combine them into an ensemble that 
outperforms them all on the validation set, using 
a soft or hard voting classifier. Once you have 
found one, try it on the test set. How much 
better does it perform compared to the individual 
classifiers?

36



Summary

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

37


