
Classical Techniques

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn, Keras and
TensorFlow by Aurélien Géron (O’Reilly). 2019, 978-1-492-03264-9.

1

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

2

k-Nearest Neighbors

• Find a predefined number of training samples (k)
closest in distance to the new point and predict the
label from them or regression or classification.

• The number of samples can be a user-defined
constant (k-nearest neighbor learning), or vary
based on the local density of points (radius-based
neighbor learning).

• The distance can be any metric measure: standard
Euclidean distance is the most common choice.

• Reference: https://scikit-
learn.org/stable/modules/neighbors.html

3

https://scikit-learn.org/stable/modules/neighbors.html

Nearest Neighbors Classification

class sklearn.neighbors.KNeighborsClassifier(
n_neighbors=5, weights='uniform', …)

• Weights can be: uniform: All points in each
neighborhood are weighted equally, and distance:
Weight points by the inverse of their distance.

• Example:
from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()

knn_clf.fit(X_train, y_train)

4

Nearest Neighbors Regression

class sklearn.neighbors.KNeighborsRegressor(
n_neighbors=5, weights='uniform', …)

• The label assigned to a query point is computed
based on the mean of the labels of its nearest
neighbors.

• Example:
from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(n_neighbors=3)

model.fit(X, y)

5

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

6

Support Vector Machine (SVM)

• Very powerful and versatile Machine Learning
model, capable of performing linear or nonlinear
classification, regression, and outlier detection.

• Well suited for classification of complex but small-
or medium-sized datasets.

• SVM gives large margin classification.

7

Linear SVM Classification

• The decision boundary is fully determined by the
instances located on the edge. These instances are
called the support vectors.

• SVMs are sensitive to the feature scales.

8

Soft Margin Classification

• Hard margin classification cannot handle linearly
inseparable classes and is sensitive to outliers.

• Soft margin classification finds a balance between
keeping the margin as large as possible and limiting
the margin violations.

9

Soft Margin Classification

• You can control the number of violations using the
C hyperparameter.

• If your SVM model is overfitting, you can try
regularizing it by reducing C.

10

Iris Dataset

11

A famous dataset that contains
the sepal and petal length and
width of 150 iris flowers of
three different species: Setosa,
Versicolor, and Virginica.

SVM Classification Example

import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica
svm_clf = Pipeline([

("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),

])
svm_clf.fit(X, y)

>>> svm_clf.predict([[5.5, 1.7]])
array([1.])

12

Used for maximum-margin
classification.

Nonlinear SVM Classification

• The SVM class supports nonlinear classification
using the kernel option.

13

Controls how much the model is
influenced by high-degree polynomials

versus low-degree

Gaussian Radial Basis Function

• The Gaussian RBF can be used to find similarity
features (x2 and x3) of the one-dimensional dataset
with two landmarks to it at x1 = –2 and x1 = 1

14

Linearly separable

Gaussian RBF Kernel

• Is popular with SVM to solve nonlinear problems.

• Transforms a training set with m instances and n
features to m instances and m features.

• Gamma and C are used for regularization with
smaller values.

15

Gaussian RBF Kernel

16

Linear SVM Regression

• Fits as many instances as possible on the margin
while limiting margin violations. The width of the
street is controlled by a hyperparameter ϵ.

17

Nonlinear SVM Regression

18

SVM Conclusion

• The LinearSVC has complexity of O(m × n).

• The SVC time complexity is usually between
O(m2 × n) and O(m3 × n).

• This algorithm is perfect for complex but small or
medium training sets. However, it scales well with
the number of features.

19

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

20

Decision Trees

• Decision Trees are versatile Machine Learning
algorithms that can perform both classification and
regression tasks, and even multioutput tasks.

• They are very powerful algorithms, capable of
fitting complex datasets.

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)

21

Visualizing a Decision Tree

22

Regularization Hyperparameters

• Increase min_* or decrease max_*: max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None, max_leaf_nodes=None

23

Decision Trees Regression

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X, y)

24

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

25

Ensemble Learning and Random
Forests
• A group of predictors is called an ensemble.

• You can train a group of Decision Tree classifiers,
each on a different random subset of the training
set.

• To make predictions, obtain the predictions of all
individual trees, then predict the class that gets the
most votes.

• Such an ensemble of Decision Trees is called a
Random Forest.

26

Voting Classifiers

• If each classifier is a weak learner (meaning it does
only slightly better than random guessing), the
ensemble can be a strong learner (achieving high
accuracy).

27

Scikit-Learn Voting Classifier 1/2

28

voting='soft' predict the class with the
highest class probability

Scikit-Learn Voting Classifier 2/2

29

Bagging and Pasting

• Use the same training algorithm for every predictor,
but train them on different random subsets of the
training set.

• When sampling is performed with replacement, this
method is called bagging (short for bootstrap
aggregating).

• When sampling is performed without replacement, it is
called pasting.

• The aggregation function is the most frequent
prediction (hard voting) for classification, or the
average for regression.

30

Bagging and Pasting

31

with replacement and
use all available cores

Random Forests

• An ensemble of Decision Trees trained via the
bagging with max_samples set to the size of the
training set, and choosing the best random splits.

• Equivalent to:

32

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

33

Exercises

1. Train an SVM classifier on the MNIST dataset.
Since SVM classifiers are binary classifiers, you
will need to use one-versus-all to classify all 10
digits. You may want to tune the
hyperparameters using small validation sets to
speed up the process. What accuracy can you
reach?

34

Exercises

2. Train and fine-tune a Decision Tree for the moons
dataset.

a) Generate a moons dataset using
make_moons(n_samples=10000, noise=0.4).

b) Split it into a training set and a test set using
train_test_split().

c) Use grid search with cross-validation (with the help of the
GridSearchCV class) to find good hyperparameter values for
a DecisionTreeClassifier. Hint: try various values for
max_leaf_nodes.

d) Train it on the full training set using these hyperparameters,
and measure your model’s performance on the test set. You
should get roughly 85% to 87% accuracy.

35

Exercises

3. Load the MNIST data and split it into a training
set, a validation set, and a test set (e.g., use
50,000 instances for training, 10,000 for
validation, and 10,000 for testing). Then train
various classifiers, such as a Random Forest
classifier, an Extra-Trees classifier, and an SVM.
Next, try to combine them into an ensemble that
outperforms them all on the validation set, using
a soft or hard voting classifier. Once you have
found one, try it on the test set. How much
better does it perform compared to the individual
classifiers?

36

Summary

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

37

