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The 7 Steps of Machine Learning

* YouTube Video: The 7 Steps of Machine Learning
from Google Cloud Platform

https://voutu.be/nKW8Ndu7Mjw

Caution: Alcohol is forbidden in the Islamic religion and
causes addiction and has negative effects on health.
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Working with Real Data

* Popular open data repositories:
* Tensorflow Datasets (GitHub)
e UC Irvine Machine Learning Repository
» Kaggle datasets
* Amazon’s AWS datasets
* |EEE DataPort

* Meta portals (they list open data repositories):
* Google Dataset Search
* http://dataportals.org/
* http://opendatamonitor.eu/
* http://quandl.com/

* Other pages listing many popular open data repositories:
* Wikipedia’s list of Machine Learning datasets
* Quora.com question
* Datasets subreddit



https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
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https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
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https://www.reddit.com/r/datasets/
https://www.reddit.com/r/datasets/

1. Look at the Big Picture: CA
Housing Data
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1.1. Frame the Problem

Your component Other signals

I

Upstream District Investment
components Pricing analysis

District Data District Prices Investments

Is it supervised, unsupervised, or Reinforcement Learning?

s it a classification task, a regression task, or something else?
Should you use batch learning or online learning techniques?
Instance-based or Model-based learning?
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1.2. Select a Performance Measure

* Root Mean Square Error (RMSE)

m 5
(D))”
RMSE(X, h) \/m le(h( 7))
e /M is the number of samples

* X1 is the feature vector of Sample
/
* )X is the label or desired output

e X is a matrix containing all the x-
feature values

(118.29 33.91 1,416 38,372




1.2. Select a Performance Measure

e Mean Absolute Error

MAE(X,h) = —
1=1

!"?(XU)) — },,(5)‘

e MAE is better than RMSE when there are outlier
samples.
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2. Get the Data

* If you didn’t do it before, it is time now to
download the Jupyter notebooks of the textbook
from

https://github.com/ageron/handson-ml2

 Start Jupyter notebook and open Chapter 2
notebook.

e Hint: If you get kernel connection problem, try
C:\>jupyter notebook —-port 8889

* The following slides summarize the code used in
this notebook.

11
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2. Get the Data

1. Download the Ahousing.tgz file from Github using
urllib.request.urlretrieve () from the
six.moves package

2. Extract the data from this compressed tar file
using tarfile.open() andextractall().The
data will be in the CSV file housing.csv

3. Read the CSV file into a Pandas DataFrame called
housing using pandas.read csv ()



2.1. Take a Quick Look at the Data
Structure

* Display the top five rows using the DataFrame’s
head () method

* The info () method is useful to get a quick
description of the data

* To find categories and repetitions of some column
use housing. [ ‘key’].value counts ()

* The describe () method shows a summary of the
numerical attributes.

* Show histogram using the hist () method and
matplotlib.pyplot.show ()



In [6]: housing.info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

longitude 20040 non-null float64

207 missing latitude 20640 non-null float64
features Wzom non-null floaté64
total room 20640 non-null float64

total bedrooms 20433 non-null float64

population 20640 non-null float64d

households 20640 non-null float64

median income 20640 non-null floaté64

median house value 20640 non-null float64

ocean proximity 20640 non-null object

dtypes: float64(9), object(1l)
memory usage: 1.6+ MB

>>> housing[ "ocean proximity"].value_counts()

<1H OCEAN 9136

INLAND 6551

NEAR OCEAN 2658

NEAR BAY 2290

ISLAND 5

Name: ocean_proximity, dtype: inté64 14




2.2. Create a Test Set

* Split the available data randomly to:
* Training set (80%)
e Test set (20%)

* The example defines a function called
split train test () forillustration.

* Scikit-Learn has train test split().

 Scikit-Learn also has StratifiedShuffleSplit ()
that does stratified sampling.

* Stratification ensures that the test samples are
representative of the target categories.



2.2.1. Create a Test Set: User-
defined function

import numpy as np

def split_train_test(data, test_ratio):
shuffled indices = np.random.permutation(len(data))
test _set size = int(len(data) * test ratio)
test _indices = shuffled indices[:test set size]
train_indices = shuffled 1indices[test_set size:]
return data.iloc[train_indices], data.iloc[test_1indices]

You can then use this function like this:

>>> trailn_set, test_set = split_train_test(housing, 0.2)
>>> print(len(train_set), "train +", len(test_set), "test")
16512 train + 4128 test

16



2.2.2. Create a Test Set: Using
Scikit-Learn functions

from import train_test split

train_set, test set = train_test split(housing, test size=0.2, random_state=42)

Stratification is usually
done on the target class.

from import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test size=0.2, random_stake=42)

for train_index, test index in split.split(housing, housing["income cat"]):
strat_train_set = housing.loc[train_index]
strat_test _set = housing.loc[test_index]

17
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3. Discover and Visualize the Data
to Gain Insights

* Visualize geographical data using

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population",
c="med1an_house value", cmap=plt.get_cmap("jet"), colorbar=True,

)
plt.legend()

alpha: Transparency, s: size, c: color, cmap: blue to red

19
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3.1. Looking for Correlations

 Compute the standard correlation coefficient (also
called Pearson’s n between every pair of attributes
uﬂng corr matrix = housing.corr ()

> i1 (@i —2)(yi — )

JZ@ﬁm—mxﬁLl

>>> corr_matrix["median_house value"].sort_values(ascending=False)

median_house_value 1.000000

median_income 0.687170

Eota}_roomzi g'iiig;é total bedrooms 0.047865

hou51EgIge tan_dage 0'864?82 population -0.026699

Ousenotds ' longitude -0.047279
latitude -0.142826 |21




3.1. Looking for Correlations

 Zero linear correlation (r = 0) does not guarantee

independence.
. -0.8 -1

0.8

A 3
o #
e TR
Y i
A i,
k!.:" \'g;"".* Ed
22



3.2. Pandas Scatter Matrix

from import scatter_matrix
attributes = ["median_house_value", "median_income"]

scatter_matrix(housing[attributes], figsize=(12, 8))
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3.3. Experimenting with Attribute
Combinations

* Rooms per household is better than total rooms:

housing["rooms_per_household"] = housing["total rooms"]/housing["households"]

>>> corr_matrix = housing.corr()
»>>> corr_matrix["median_house value"].sort_values(ascending=False)

median_house value 1.000000
median_income 0.687170
rooms_per_household 0.199343
total _rooms ®.135231

* Similarly, BMI is better than weight or height for
medical purposes.

24
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4. Prepare the Data for Machine
Learning Algorithms

e Separate the features from the response.

housing = strat_train_set.drop("median_house value", axis=1)

housing_labels = strat_train_set["median house value"].copy()

* Options of handling missing features:
1. Get rid of the corresponding districts
2. Getrid of the whole attribute
3. Set the values to some value (0, mean, median, etc.)
housing.dropna(subset=["total bedrooms"]) # option 1
housing.drop("total bedrooms", axis=1) # option 2
median = housing["total bedrooms"].median() # option 3

housing["total bedrooms"].fillna(median, inplace=True)
26



4.1. Handling Missing Features
Using Scikit-Learn

e Use SimpleImputer on the numerical features.
Need to remove categorical variables before doing
the fit. The attribute statistics has the means.

from import Simplelmputer

imputer = SimplelImputer(strategy="median")

housing_num = housing.drop("ocean proximity", axis=1)
imputer.fit(housing_num)

>>> imputer.statistics_

array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])
>>> housing _num.median().values

array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])
X = imputer.transform(housing_num)

NumPy array 27




4.2. Handling Text and Categorical
Attributes

* ocean_proximity is categorical feature.

>>> housing_cat = housing[["ocean proximity"]]
>>> housing_cat.head(10)
ocean_proximity

17606 <1H OCEAN
18632 <1H OCEAN
14650 NEAR OCEAN
3230 INLAND
3555 <1H OCEAN
19480 INLAND
8879 <1H OCEAN
13685 INLAND
4937 <1H OCEAN

4861 <1H OCEAN



4.2. Handling Text and Categorical
Attributes

* Most machine learning algorithms prefer to work
with numbers. Converting to numbers:

>>> from

2>

=22

b

array([[0.
[0.
[4
[1
[0
[1.
[0.
[1.
[0
[0.

import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()

housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)

housing_cat_encoded[:10]

-
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L

| SR 4

I,
I,

15
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* ]
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L]

\ Numerical values

imply distances

>>> ordinal_encoder.categories_
[array(['<1H OCEAN', "INLAND', 'ISLAND',
dtype=object) ]

"NEAR BAY',

'"NEAR OCEAN'],

29




4.2. Handling Text and Categorical
Attributes

* To ensure encoding neutrality, we can use the one-

hot encoding.

>>> from import OneHotEncoder
>>> cat_encoder = OneHotEncoder()
>>> housing cat _1lhot = cat_encoder.fit_transform(housing cat)
>>> housing _cat_1lhot
<16512x5 sparse matrix of type '<class 'numpy.floaté4d's'

with 16512 stored elements in Compressed Sparse Row format>
>>> housing_cat_1hot.toarray()
array([[1., 0., 0., 0., 0.],

[1., 0., 0., 0., 0.], Converts sparse matrix
[0., 0., 0., 0., 1.], to dense matrix.

' ]) 30



4.3. Custom Transformers

* Scikit-Learn allows you to create your own
transformers.

* You can create a transformer to create derived
features.

* Create a class and implement three methods: fit()
(returning self), transform(), and fit_transform().
Include base classes:

o TransformerMixin to get fit_transform()
* BaseEstimator to get get_params() and set_params()



4.3. Custom Transformers

from sklearn.base import BaseEstimator, TransformerMixin
rooms_1ix, household ix = 3, 6

class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_1ix] / X[:, household ix]
return np.c_[X, rooms_per_household ]

attr_adder = CombinedAttributesAdder()
housing _extra_attribs = attr_adder.transform(housing.values)

32



4.4. Feature Scaling

* ML algorithms generally don’t perform well when
the input numerical attributes have very different
scales.

* Scaling techniques:

' . x — min(x)
* Min-max scaling

8
|

max(z) — min(z)

o Standardization. Tr =



4.5. Transformation Pipelines

attribs

adder

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([
("imputer', SimpleImputer(strategy="median")),
("attribs _adder', CombinedAttributesAdder()),
('std scaler', StandardScaler()),

D

housing _num_tr = num_pipeline.fit_transform(housing num)
— 34




4.6. Full Pipeline

from sklearn.compose import ColumnTransformer

num_attribs = list(housing_num)
cat_attribs = ["ocean proximity"]

full_pipeline = ColumnTransformer([
("num", num_pipeline, num_attribs),
("cat", OneHotEncoder(), cat_attribs),

D

housing prepared = full pipeline.fit _transform(housing)

\

Dense array

35
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5. Select and Train a Model

* Let us start by training a simple linear regressor.

from import LinearRegression

lin_reg = LinearRegression()
lin_reqg.fit(housing_prepared, housing_labels)

* Try it out on five instances from the training set.

>>> some_data = housing.iloc[:5] 50% off
>>> some_labels = housing labels.iloc[:5
>>> some_data prepared = full pipelingZtransform(some_data)

>>> print("Predictions:\t", lin_rggtpredict(some_data prepared))
Predictions: [ 303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_ labels))

Labels: [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]

37




5.1. Evaluate the Model on the

Entire Training Set
* Use RMSE
>>> from import mean_squared _error

>>> housing_predictions = lin_reg.predict(housing prepared)

>>> Lin_mse = mean_squared_error(housing labels, housing predictions)
>>> Llin_rmse = np.sqrt(lin_mse)

>>> lin_rmse

68628.413493824875 \ This is not a satisfactory result as the
median_housing values range
between $120,000 and $265,000.

38



5.2. Try the Decision Tree
Regressor

from import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree reg.fit(housing prepared, housing labels)

>>> housing_predictions = tree_reg.predict(housing prepared)

>>> tree_mse = mean_squared _error(housing_labels, housing predictions)
>>> tree_rmse = np.sqrt(tree _mse)

>>> tree_rmse

0.0
\ Overfitting: It has memorized

the entire training set!

39



5.3. Better Evaluation Using Cross-
Validation

* Segment the training data into 10 sets and repeat
training and evaluation 10 times.

from import cross_val_score
scores = cross_val_score(tree reg, housing _prepared, housing labels,

scoring="neg _mean_squared_error", cv=10)
rmse_scores = np.sqrt(-scores)

>>> def display scores(scores):
print("Scores:", scores)
print("Mean:", scores.mean())
print("Standard deviation:", scores.std())

>>> display _scores(tree rmse_scores)

Scores: [70194.33680785 66855.16363941 ++- ] Worse than Linear
Mean: 71407.68766037929 €

Standard deviation: 2439.4345041191004

Regressor

40



5.4. Try the Random Forests
Regressor

>>> from import RandomForestRegressor

>>> forest reg = RandomForestRegressor()

>>> forest reg.fit(housing prepared, housing labels)

>>> [...]

>>> forest_rmse

18603.515021376355

>>> display_scores(forest rmse scores)

Scores: [49519.80364233 47461.9115823 50029.02762854 52325.28068953
49308.39426421 53446.37892622 48634.8036574 47585.73832311
53490.10699751 50021.5852922 ]

Mean: 50182.303100336096 <

Standard deviation: 2097.0810550985693

Best Accuracy

41
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6. Fine-Tune Your Model

* Fine-tune your system by fiddling with:
* The hyperparameters
 Removing and adding features
e Changing feature preprocessing techniques

e Can experiment manually. But it is best to
automate this process using Scikit-Learn:
e GridSearchCV
* or RandomizedSearchCV



6.1. Grid Search

* Can automate exploring a search space of
3x4+2x3=12+6=18

from sklearn.model_selection import GridSearchCV

param grid = |
{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]

forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest _reg, param_grid, cv=5,
scoring='neg_mean_squared error',

return_train_score=True)

grid_search.fit(housing prepared, housing_labels)

44



6.2 Examine the Results of Your
Grid Search

e Can examine the best hyperparameters using:

>>> grid_search.best_params_
{'max_features': 8, 'n_estimators': 30}

* Can examine all search results using:

>>> cvres = grid_search.cv_results_
>>> for mean_score, params in zip(cvres['"mean test score"], cvres["params"]):

print(np.sqrt(-mean_score), params)

63669.05791727153 {'max_features': 2, 'n_estimators': 3}
55627.16171305252 {'max_features': 2, 'n_estimators': 10}

49682 .25345942335 {'max_features': 8, 'n_estimators': 30}

Best Tuned Accuracy 45




6.2 Evaluate Your System on the
Test Set

* The final model is the best estimator found by the
grid search.

* To evaluate it on the test set, transform the test
features, predict using transformed features, and

evaluate accuracy.
Better than train set!

final_model = grid_search.best_estimator_
X _test = strat _test set.drop("median_house value", axis=1)

y_test = strat_test _set["median house value"].copy()
X_test_prepared = full pipeline.transform(X_test)

final predictions = final model.predict(X_test prepared)
final mse = mean_squared error(y_test, final predictions)
final _rmse = np.sqrt(final mse) # => evaluates to 48,209.6

46



6.3 Save Your Best Model for the
Production System

from import joblib

joblib.dump(my _model, "my model.pkl")
# and later...
my_model_loaded = joblib.load("my_model.pkl")

47
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7. Present Your Solution

* Present your solution highlighting:
* What you have learned
* What worked and what did not
 What assumptions were made
* What your system’s limitations are

 Document everything, and create nice
presentations with:
* Clear visualizations

* Easy-to-remember statements, e.g., “the median income
is the number one predictor of housing prices”.



8. Launch, Monitor, and Maintain
Your System

* Prepare your production program that uses your
best trained model and launch it.

* Monitor the accuracy of your system. Also monitor
the input data.

e Retrain your system periodically using fresh data.
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Exercise

* Try a Support Vector Machine regressor
(sklearn.svm.SVR), with various hyperparameters
such as kernel="linear" (with various values for the
C hyperparameter) or kernel="rbf" (with various
values for the C and gamma hyperparameters).
Don’t worry about what these hyperparameters
mean for now. How does the best SVR predictor
perform?



