Python Basics

Prof. Gheith Abandah

Reference: Vanderplas, Jacob T. A Whirlwind Tour of Python. O'Reilly
Media, 2016.

Reference

* Vanderplas, Jacob T. A Whirlwind Tour of Python.
O'Reilly Media, 2016.
https://www.oreilly.com/programming/free/files/a-
whirlwind-tour-of-python.pdf

* Supplemental material (code examples, IPython
notebooks, etc.) is available at
https://github.com/jakevdp/WhirlwindTourOfPytho

n/

https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://www.oreilly.com/programming/free/files/a-whirlwind-tour-of-python.pdf
https://github.com/jakevdp/WhirlwindTourOfPython/
https://github.com/jakevdp/WhirlwindTourOfPython/
https://github.com/jakevdp/WhirlwindTourOfPython/

Outline

* Quick Python Syntax

* Variables and Objects

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

Quick Python Syntax

e Comments are marked
by #.

e Quotation marks (" ')
can also be used to
enter comments.

e Use \ to extend a
Is.tatement on the next
ine.

* Semicolon ; can
optionally terminate a
statement.

+= 2 # shorthand for x = x + 2

Comments

Multi-line comment often
used in documentation

"Single-1line Comment™

lower = []; upper = []

Quick Python Syntax

* In Python, code
blocks are denoted
by indentation .

* Four spaces are
usually used.

* Which code snippet
always prints x?

for 1 in range(10):
if 1 < midpoint:
lower.append(i)
else:
upper.append(i)

>>> 1f x < 4:
y =X * 7/
print(x)

>>> 1f X < 4:
y =X * 7
. print(x)

Quick Python Syntax

* Parentheses are for
grouping or calling.

In [5]: 2 * (3 + 4)

Out [5]: 14

In [6]: print('first value:', 1)
first value: 1
In [7]: print('second value:', 2)

second value: 2

Outline

* Variables and Objects

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

Variables and Objects

* Python variables are
pointers to objects.

1 # x 1s an integer
"hello’ # now x is a string
[1, 2, 3] # now x is a list

>
i nu

e VVariable names can X

point to objects of
any type.

Variables and Objects

* If we have two variable names pointing to the same
mutable object, then changing one will change the
other as well!

In [2]: x = [1, 2, 3]
y = X

In [3]: print(y)
[1, 2, 3]

In [4]: x.append(4) # append 4 to the list pointed to by x
print(y) # y's list is modified as well!

[1, 2, 3, 4]

In [5]: x = 'something else'
print(y) # vy is unchanged

[1.- 2: 3: 4] 9

Variables and Objects

 Numbers, strings, and other simple types are
immutable.

In [6]: x = 10
y = X
X +=5 #add 5 to x's value, and assign it to x
print("x =", X)
print("y =", y)
X = 15
y = 10

Variables and Objects

* Everything is an object

* Object have attributes
and methods accessible
through the dot syntax

()

In [160]: L = [1, 2, 3]
L.append(100)
print(L)

[1, 2, 3, 100]

In [7]:

out [7]:
In [8]:

Out [8]:

In [9]:

out [9]:

X = 4
type(x)

int
X = 'hello'
type(x)

str

X = 3.14159
type(x)

float

11

Outline

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

Arithmetic Operators

a +b
a -b
a*b
a/ b
a// b
a % b

a ** b

+3

Addition Sumof aand b
Subtraction Difference of a and b
Multiplication Product of aand b

True division Quotient of a and b

Floor division Quotient of a and b, removing fractional parts

Modulus Remainder after division of a by b
Exponentiation a raised to the power of b
Negation The negative of a

Unary plus a unchanged (rarely used)

>»> a =25

>»>» b = 3

>»>»a /b
1.666b6600E60G0LEG/
>»>>»a f/ b

1

>»>>» a % b

2
13

Bitwise Operators

g | 4] 2] 1|4mweight

Olojofojo
1j0j0j0}1
Operator Name Description 2|ofo]1]o
: 3lo]o|1f2
a & b Bitwise AND Bits defined in both a and b s o llols
. . . . 5101(111]0]1
a | b BitwiseOR Bits defined in a or b or both = b T [T
a ~ b Bitwise XOR Bits defined in a or b but not both Hsnomn
a << b Bitshiftleft Shift bits of a left by b units pENCECH-
a >> b Bitshiftright Shift bits of a right by b units s 1 ':; ;
~a Bitwise NOT Bitwise negation of a Bli1]1fo s
14111110
1511|112

>»>a=1

>»> b = 2

»>>>print(a &b, a|b,a*b,b<<a,b3>»a, ~b)
8@ 3 341 -3

14

Comparison Operators

 Return Boolean values
True or False

Operation Description

d

d

d

== aequaltob

'= b anotequaltob

< b alessthanb

> b agreaterthanb

<= b alessthanorequaltob

>= b a(greater than or equal to b

*>»r»a =1

> b = 2

>»»> print(a == b , a !=
False True True False

,a<hb,a>»b)

15

Assignment Operators

* Assignment is >>> =3 = k = 10
evaluated from left to >>> print(i, §, k)
rlght 16 16 16

* There is an augmented
assignment operator
corresponding to each
of the binary arithmetic

a+=b a-=b a*=b a/=b
a//=b a%=b a**=b a&=b

a |= a*=b a<<=b a>=05>b

and bitwise operators.

>»>» a =2
*»»» b = 18
*»»» b += a

>>»> print{ a , b)
2 12 16

Boolean Operators

* The Boolean operators
operate on Boolean

values:

 and

or In [:‘]: X = 4

° not (X < H) and (X > ,_)

Qut |15]: True
e Can be used to [15]

construct complex In [16]: (x > 10) or (x % 2 == 0)
comparisons. out [16]: True

In [17]: not (x < 6)

Out [17]: False

17

Identity and Membership

Operators

Operator Description

a is b True if a and b are identical objects

a 1s not b Trueif aand b are not identical objects
a in b True if a is a member of b

a not in b Trueif aisnot a memberof b

In [24]: 1 imn [1, 2, 3]
Out [24]: True
In [25]: 2 not in [1, 2, 3]

Out [25]: False

In [19]:

In [20]:

Out [20]:

In [21]:

Out [21]:

In [22]:

Out [22]:

In [23]:

Oout [23]:

18

Outline

Built-In Types: Simple Values
Built-In Data Structures
Control Flow

Defining and Using Functions
* Objects and Classes

* Errors and Exceptions
Iterators

List Comprehensions

* Generators

Python Scalar Types

Type Example Description
int X = 1 Integers (i.e., whole numbers)
float X = 1.0 Floating-point numbers (i.e., real numbers)

complex x = 1 + 23 Complex numbers (i.e., numbers with a real and imaginary part)
bool x = True Boolean: True/False values
str x = "abc' String: characters or text

NoneType x = None Special object indicating nulls

»>> print(int('1') , float(1l) , len(str(18)))
1 1.8 2

20

Integers and Floats

* Integers are variable-precision, no overflow is
possible.

> 2 F¥ 08
1237948039285380274899124224

* The floating-point type can store fractional
numbers. They can be defined either in standard
decimal notation or in exponential notation.

In [5]: x = 0.000005
y = 5e-6
print(x == vy)

True

In [6]: x = 1400000.00

y

1.4e6

print(x == vy)

True

21

Strings

 Strings in Python are created with single or double

quotes.

* The built-in function 1en() returns the string

length.

* Any character in the string can be accessed through

its index.

»»» s1 = "Hi1 "
>»» 52 = "Python’

Hi Python 6 Hi Hi Hi

>»>» print(s1_+ s2 , len(s2) , 3 _* s1 , s2[@])

P

22

None and Boolean

 Functions that do not return value return None.
* None variables are evaluated to False.

* The Boolean type is a simple type with two possible
values: True and False.

* Values are evaluated to True unless they are None,
Zero or empty.

>>>» print({ bool(1.5) , boel(®) , bool(Mone) , bool([]))
True False False False

23

Outline

* Built-In Data Structures

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

Built-In Data Structures

* There are four built in Python data structures.

Type Name Example Description

list
tuple
dict

set

[1, 2, 3] Ordered collection
(1, 2, 3) Immutable ordered collection
'a':1, 'b':2, 'c':3} Unordered (keyvalue) mapping

{1, 2, 3} Unordered collection of unique values

25

Lists

e List are ordered
and mutable.

* Alist can hold
objects of any type.

* Python uses zero-
based indexing.

* Elements at the
end of the list can
be accessed with
negative numbers,
starting from -1.

0

»>>» L =[2, 3,5, 7]

>»» L.append(11)

»»> print(len(L) , L[®] , L[4])
5 2 11

>»> L = [15, 16] + L

>»» print(L)

[15, 16, 2, 3, 5, 7, 11]

»>»» L.sort()

»>>> print(L)

[2, 3, 5, 7, 11, 15, 16]

>»>> L = [1, "two', 3.14, [0, 3, 5]]
»»» L[3]

[6, 3, 5]

»>»» L[-2]

3.14

1 2 3 4 5

2 3 11

26

Lists

* Slicing is a means of
accessing multiple values
in sub-lists.

e [start : end+1l : inc]

* Negative step reverses
the list.

* Both indexing and slicing
can be used to set
elements as well as access
them.

*»» L =102, 3, 5, 7, 11]
> L[:]

[2, 3, 5, 7, 11]

>3 L[:3]

[2, 3, 5]

>»» L[2:]

[5, 7, 11]

»>»» L[1:4]

[3, 5, 7]

»rr L[::2]

[2, 5, 11]

»»» L[::-1]

[11, 7, 5, 3, 2]

»»» L[@] = 166

»»» L[1:3] = [286, 36]
»»» L

[1e6, 28, 3@, 7, 11]

27

Tuples

* Tuples are similar to lists, but are immutable.
 Can be defined with or without parentheses ().
* Functions return multiple values as tuples.

»»>» t = (1, 2, 3)

>»> t =1, 2, 3

»>>> print(t[2], len(t))

3 3

>2r» x = B.25

»>>» x.as_integer ratio()

(1, 4)

»>>>» numerator, denominator = x.as_integer ratio()
»>>>» print(numerator, denominator)

14

Dictionaries

* Dictionaries are flexible mappings of keys to values.

* They can be created via a comma-separated list of
key:value pairs within curly braces.

»»>»d = {'Name':"Sami’, "Weight":75}

»»>» d['Length'] = 1.75

»»>» d

{"Name': 'Sami', 'Weight': 75, 'Length': 1.75}
>»» d["Name']

"Sami’

29

Sets

e Sets are unordered collections of unigue items.

* They are defined using curly brackets { }.

» Set operations include union, intersection,
difference and symmetric difference.

>>>
>>>
>33
1,
>33
13,
>33
12}
>>>

1,

primes = {2, 3, 5, 7}
odds = {1, 3, 5, 7, 9}

primes |
2, 3, 5,
primes &
5, 7}

primes -

primes ~
2, 9}

odds
7, 9}
odds
odds

odds

Union
Intersection
Differences

Symmetric difference

30

Outline

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

Conditional Statements: if,
elif, and else

* if statements in Python have optional elif and

else parts.

In [1]: x = -15

if x == 0:
«— print(x,
elif x > 0:
print(x,
elif x < 0:
print(x,
else:
print(x,

-15 1s negatiue

"1s

'1s

"1s

"1s

zero")
positive")
negative")

unlike anything I've ever seen...")

32

for Loops

* The for loop is repeated for each index returned
by the iterator after in.

In [2]: for N in [2, 3, 5, 7]:
«— print(N, end=' ') # print all on same line

2 357

* The range() objectis very useful in for loops.

In [3]: for 1 in range(10):
print(i, end=' ")

123456789

33

for Loops

* The range(start, end+1, inc) has default zero
start and unit increment.

In [4]: # range from 5 to 10
list(range(5, 10))

Out [4]: [5, 6, 7, 8, 9]

In [5]: # range from @ to 10 by 2
list(range(0, 10, 2))

Out [5]: [0, 2, 4, 6, 8]

while Loops

* The while loop iterates as long as the condition is

met.

In [6]: 1 =0
while 1 < 10:

«— print(i, end=" ")
1 +=1

123456789

35

break and continue: Fine-
Tuning Your Loops

* The continue statement skips the remainder of
the current loop, and goes to the next iteration.

In [7]: for n in range(20):
check if n is even
ifn % :_== e Prints odd
continue numbers
print(n, end=" ")

135791113 15 17 19

break and continue: Fine-
Tuning Your Loops

 The break statement breaks out of the loop

entirely.

In [8]: a, b

while True:
(a, b) = (b, a + b)
if a > amax:
break
L.append(a)

print(L)

List all Fibonacci
numbers up to 100.

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] .

Outline

Defining and Using Functions
* Objects and Classes

* Errors and Exceptions
Iterators

List Comprehensions

* Generators

Defining Functions

* Functions are defined with the def statement.

* The following function returns a list of the first N
Fibonacci numbers.

e Calling it:

In [4]: def fibonacci(N):
—L =[]
a, b=20,1
while len(L) < N:
a, b=>b, a+b
L.append(a)
return L

In [5]:

Out [5]:

fibonacci(10)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

39

Default Argument Values

* You can have default values for arguments.

def fibonacci(N, a=0, b=1):
L =[]
while len(L) < N:
a, b=b, a+b
L.append(a)
return L

* It can be called with our without the optional args.

fibonacci(10)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fibonacci(10, 0, 2)

(2, 2, 4, 6, 10, 16, 26, 42, 68, 110]

40

*args and **kwargs: Flexible
Arguments

* Functions can be defined using *args and
**kwargs to capture variable numbers of
arguments and keyword arguments.

In [11]: def catch all(*args, **kwargs):
print("args =", args)
print("kwargs = ", kwargs)

In [12]: catch_all(1, 2, 3, a=4, b=5)

— Tuple
args = (1, 2, 3)4é”””””—’

kwargs = {'a': 4, 'b': 5}4f———"[NCﬂonary

In [13]: catch_all('a', keyword=2)

args = ('a’,)
kwargs = {'keyword': 2} a1

Outline

* Objects and Classes

* Errors and Exceptions
Iterators

List Comprehensions
* Generators

Objects and Classes

* Python is object-oriented programming language.
* Objects bundle together data and functions.
e Each Python object has a type, or class.
* An object is an instance of a class.
e Accessing instance data:
object.attribute name
* Accessing instance methods:
object.method name(parameters)

43

String Objects

 String objects are instances of class str.

input("Please enter your name: ")

name

print("Hello " + name.upper() + ", how are you?")

Please enter your name: Sami

Hello SAMI, how are you?

* String objects have many useful methods
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

44

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

String Methods

>»> s = " Hi "
>>> s.strip()
IHil

>>> 'Age: {0}, Weight: {1}'.format(20, 70)
"Age: 20, Weight: 70°

>>> s = 'This is a string'
>>> s.find('is")
2

>>> s.replace('a’', 'the')
'This is the string’

45

File Objects

* Files can be opened for read, write or append.

f = open('myfile.txt’,
f.write('Line 1\n")
f.write('Line 2\n")
f.close()

f = open('myfile.txt",
for line in f:

print(line.strip())
f.close()

Line 1
Line 2

46

Classes

* New class types can be defined using class keyword.

class Animal(object):
def __init_ (self, name='Animal'): # Constructor
print('Constructing an animal!"')
self.name = name
if name == 'Cat':
self.meows = True # Attribute
else:
self.meows = False
super(Animal, self). init_ ()

def does _meow(self): # Method
return self.meows

Constructing an animal!

cat = Animal('Cat') It meows True

print('It meows ', cat.does_meow())

47

Outline

* Errors and Exceptions
Iterators

List Comprehensions
* Generators

Runtime Errors

* Referencing an
undefined variable

* Unsupported operation
* Division by zero

* Accessing a sequence
element that doesn’t
exist

In [1]: print(Q)

In [2]: 1 + "abc'

In [3]: 2/ ©

49

Catching Exceptions: try and
except

* Runtime exceptions can be handled using the
try..except clause.

In [6]: try:
print("let's try something:")
X =1/ 0 # ZeroDivisionError
except:
print("something bad happened!")

let's try something:
something bad happened!

try..except..else..finally

* Python also support else and finally

In [23]: try:

except:

print("this happens
else:

print("this happens
finally:

print("this happens

try something here
this happens only if it succeeds
this happens no matter what

print("try something here")

only if it fails")
only i1f 1t succeeds")

no matter what")

51

Outline

* |terators
* List Comprehensions
* Generators

Iterators

* [terators are used in for loops and can be used
using next ()

In [1]: for 1 in range(10):
print(i, end=" ")

©1234567829

In [4]: I = iter([2, 4, 6, 8, 10])
In [5]: print(next(I))

2

In [6]: print(next(I))

4

Iterators

In [1]: for 1 in range(10):
. print(i, end=" ")
* The range iterator

123456789

In [2]: for value in [2, 4, 6, 8, 10]:
do some operation
print(value + 1, end=' ")

* [terating over lists

357911

* enumerate iterator | In [14]: for i, val in enumerate(L):
print(i, val)

W NP2 O
= 0o O AN

Outline

e Quick Python Syntax

* Variables and Objects

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

* Control Flow

e Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

55

List Comprehensions

* A way to compress a list-building for loop into a
single short, readable line.

* Syntax: [expr for var in iterable]

©
In [3]: [nm ** 2 for n in range(12)]

out [3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

In [1]: [1 for 1 in range(20) if 1 % 3 > 0]

Out [1]: [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

In [4]: [(i, j) for 1 in range(2) for j in range(3)]

Out [4]: [(0, 0), (O, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

56

List Comprehensions

* Lists comprehensions can be used to construct sets

with no duplicates.

In [10]: {a % 3 for a in range(1000)}

out [10]: {0, 1, 2}

e Or dictionaries

In [11]: {Qip**Z for n in range(6)}

Out [11]: {0: O, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

57

Outline

e Quick Python Syntax

* Variables and Objects

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

e Control Flow

e Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

58

Generators

* A list is a collection of values, while a generator
expression is a recipe for producing values.

In [5]: G = (n ** 2 for n in range(12))
for val in G:
print(val, end=" ")

© 149 16 25 36 49 64 81 100 121

Generators

e A generator function uses yield to yield a
sequence of values.

In [19]: def gen_primes(N):
"""Generate primes up to N"""
primes = set()
for n in range(Z, N):
if all(n % p > 0 for p in primes):

primes.add(n)

yield Get a sequence from
n

the generator

print(*gen_primes(70))

2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

60

Summary

* Quick Python Syntax

* Variables and Objects

* Operators

* Built-In Types: Simple Values
* Built-In Data Structures

* Control Flow

* Defining and Using Functions
* Objects and Classes

* Errors and Exceptions

* |terators

List Comprehensions

* Generators

