
C++11 Multithreading

Prof. Gheith Abandah

References:

• B. Schmidt, et al. Parallel Programming: Concepts and
Practice. Morgan Kaufmann, 2017.

• P. Pacheco. An Introduction to Parallel Programming,
Morgan Kaufmann, 2011.

• http://www.cplusplus.com/doc/tutorial/

1

http://www.cplusplus.com/doc/tutorial/

Outline

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

2

1. Introduction

A Shared Memory System

3

Processes and Threads

• A process is an instance of a running (or
suspended) program.

• Threads are analogous to a “light-weight” process.

• In a shared memory program, a single process may
have multiple threads of control.

4

Spawning and Joining Threads

• An arbitrary number of
software threads can be
spawned by the master
thread of a system process.

• Oversubscription
• Rules:

1. Each thread can only be
joined or detached once.

2. A detached thread cannot
be joined, and vice versa.

3. Joined or detached threads
cannot be reused.

4. All threads have to be
joined or detached within
the scope of their
declaration.

5

Multithreading APIs

• POSIX® Threads: Also known as Pthreads.
• A standard for Unix-like operating systems.

• A library that can be linked with C programs.

• Specifies an application programming interface (API) for
multi-threaded programming.

• Windows has .NET Thread and Intel’s Threading
Building Blocks (TBB).

• Modern C++ programming language versions (e.g.,
C++11 and C++14) have built in support of
multithreading.

6

Hello World! (1)

#include <iostream> // std::cout

#include <cstdint> // uint64_t

#include <vector> // std::vector

#include <thread> // std::thread

// this function will be called by the threads (should
be void)

void say_hello(uint64_t id) {

 std::cout << "Hello from thread: " << id <<
std::endl;

}

7

Hello World! (2)

// this runs in the master thread

int main(int argc, char * argv[]) {

 const uint64_t num_threads = 4;

 std::vector<std::thread> threads;

 for (uint64_t id = 0; id < num_threads; id++)

 // emplace the thread object in vector threads

 // call say_hello with argument id

 threads.emplace_back(say_hello, id);

 // join each thread at the end

 for (auto& thread: threads)

 thread.join();

}

8

Equivalent to:
threads.push_back(std::thread(say_hello, id));

http://www.cplusplus.com/reference/vector/vector/emplace_back/
http://www.cplusplus.com/reference/thread/thread/

Compiling a Pthread program

g++ -O2 -std=c++11 -pthread hello_world.cpp -o hello_world

9

Link in the Pthreads library

$./hello_world

Hello from thread: 3

Hello from thread: 1

Hello from thread: 0

Hello from thread: 2

Outline

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

10

2. Handling Return Values – Using
Pointers
template <typename value_t, typename index_t>

void fibo(value_t n, value_t * result) {

 // initial conditions

 value_t a_0 = 0;

 value_t a_1 = 1;

 // iteratively compute the sequence

 for (index_t index = 0; index < n; index++) {

 const value_t tmp = a_0; a_0 = a_1; a_1 += tmp;

 }

 *result = a_0;

}

11

Fibonacci number: Recursively compute
the n-th number using an = an−1 + an−2 with
initial conditions a0 = 0, a1 = 1

2. Handling Return Values – Using
Pointers
int main(int argc, char * argv[]) {

 const uint64_t num_threads = 32;

 std::vector<std::thread> threads;

 std::vector<uint64_t> results(num_threads, 0);

 for (uint64_t id = 0; id < num_threads; id++)

 // specify template parameters and arguments

 threads.emplace_back(

 fibo<uint64_t, uint64_t>, id, &(results[id]));

 for (auto& thread: threads)

 thread.join();

 // print the result after the join

 for (const auto& result: results)

 std::cout << result << std::endl;

} 12

Address of a uint64_t

2. Handling Return Values – Using
Promises and Futures

• Create the state s = (p, f) by
initially declaring a promise p for
a specific data type T via
std::promise<T> p; then assign
the associated future with
std::future<T> f = p.get_future();.

• The promise p is passed as rvalue
reference via std::promise<T> &&
p. Hence, p has to be moved
using std::move() from the master
to the spawned thread.

• The promise p is fulfilled by
setting p.set_value(some_value);.

• Read the future f using f.get().
The master thread blocks its
execution until f is being signaled
by p.

13

2. Handling Return Values – Using
Promises and Futures
…

#include <future> // std::promise/future

template <typename value_t, typename index_t>

value_t fibo(

 value_t n,

 std::promise<value_t> && result) {

 …

 result.set_value(a_0); // <- fulfill promise

}

14

The promise, rvalue reference, no memory address

2. Handling Return Values – Using
Promises and Futures
int main(int argc, char * argv[]) {

 …

 std::vector<std::future<uint64_t>> results;

 for (uint64_t id = 0; id < num_threads; id++) {

 // define a promise and store the associated future

 std::promise<uint64_t> promise;

 results.emplace_back(promise.get_future());

 threads.emplace_back(

 fibo<uint64_t, uint64_t>,

 id,

 std::move(promise));

 }

 15

Move the promise to the
spawned thread. Note that

promise is now moved
elsewhere and cannot be
accessed safely anymore.

Storage for futures

2. Handling Return Values – Using
Promises and Futures
 // read the futures resulting in synchronization of

threads

 // up to the point where promises are fulfilled

 for (auto& result: results)

 std::cout << result.get() << std::endl;

 // this is mandatory since threads have to be either

 // joined or detached at the end of our program

 for (auto& thread: threads)

 thread.join();

}

16

Outline

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

17

3. Scheduling Based on Static
Distributions
• For problem of size m, spawn p processors.

• Each processor computes a chunk c: 1 ≤ c ≤ m /p.
• Block distribution: c = m/p
• Cyclic distribution: c = 1

• Block-cyclic distribution: 1 < c < m/p

18

Example: Matrix-vector
multiplication

19

A

a00 a01 … a0,n-1

a10 a11 … a1,n-1

: : :

am-1,0 am-1,1 … am-1,n-1

x

x0

:

xn-1

 =

y

y0

y1

:

ym-1

Block Distributions (1/3)

template <

 typename value_t,

 typename index_t>

void block_parallel_mult(

 std::vector<value_t>& A,

 std::vector<value_t>& x,

 std::vector<value_t>& y,

 index_t m,

 index_t n,

 index_t num_threads=8) {

20

Block Distributions (2/3)

 // inline function called by the threads that
captures the whole scope of the reference

 auto block = [&] (const index_t& id) -> void {

 const index_t chunk = m / num_threads;

 const index_t lower = id*chunk;

 const index_t upper = std::min(lower+chunk, m);

 for (index_t row = lower; row < upper; row++) {

 value_t accum = value_t(0);

 for (index_t col = 0; col < n; col++)

 accum += A[row*n+col]*x[col];

 y[row] = accum;

 }

 }; 21

c = m/p

Block Distributions (3/3)

 std::vector<std::thread> threads;

 for (index_t id = 0; id < num_threads; id++)

 threads.emplace_back(block, id);

 for (auto& thread : threads)

 thread.join();

}

22

m = n = 215

T(1) = 1.29 sec, T(8) = 0.23 sec
Speedup = 5.6
Efficiency = 70%

Cyclic Distribution

 auto cyclic = [&] (const index_t& id) -> void {

 for (index_t row = id; row < m; row += num_threads) {

 value_t accum = value_t(0);

 for (index_t col = 0; col < n; col++)

 accum += A[row*n+col]*x[col];

 y[row] = accum;

 }

 };

23

Also T(8) ≈ 0.23 sec
Simple, but may suffer from false sharing.

c = 1

Block Cyclic Distribution
index_t chunk_size = 64/sizeof(value_t)) {

auto block_cyclic = [&] (const index_t& id) -> void {

 const index_t offset = id*chunk_size;

 const index_t stride = num_threads*chunk_size;

 for (index_t lower=offset; lower<m; lower += stride) {

 const index_t upper = std::min(lower+chunk_size, m);

 for (index_t row = lower; row < upper; row++) {

 value_t accum = value_t(0);

 for (index_t col = 0; col < n; col++)

 accum += A[row*n+col]*x[col];

 y[row] = accum;

 }

 }

 }; 24

Similar speedup for this example.
Most complex, but can avoid false sharing.

1 < c < m/p

Outline

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

25

4. Handling Load Imbalance

• The case where a few threads still process their
corresponding chunk of tasks while others have
already finished their computation is called load
imbalance.

• Solutions:
1. Static Schedules

2. Dynamic Block-Cyclic Distributions

26

Example: All-Pairs Distance Matrix

• Compute the all-pairs
distance matrix.

• MNIST consists of m =
65,000 handwritten
digits stored as gray-
scale images of shape
28×28.

• Each image is stored as
plain vector with n =
784 intensity values.

27

Example: All-Pairs Distance Matrix

• One used distance measure is the squared
Euclidean distance.

• As d (x (i), x (i’)) = d (x (i'), x (i)), we only need to
compute the lower triangular part of the distance
matrix.

• Complexity: O (m2 · n)

28

Sequential Computation of All-
pairs Distance Matrix
void sequential_all_pairs(std::vector<value_t>& mnist,

 std::vector<value_t>& all_pair,

 index_t rows, index_t cols) {

for (index_t i = 0; i < rows; i++) {

 for (index_t I = 0; I <= i; I++) {

 value_t accum = value_t(0);

 for (index_t j = 0; j < cols; j++) {

 value_t residue = mnist[i*cols+j] - mnist[I*cols+j];

 accum += residue * residue;

 }

 all_pair[i*rows+I] = all_pair[I*rows+i] = accum;

}

29

~ 30 minutes

Static Schedules

• Block distribution is
not suitable because it
takes T (i) = α · (i + 1) to
compute row i.

• Block-cyclic
distribution is better
scheme.

30

Block-cyclic distribution (1/2)

void parallel_all_pairs(std::vector<value_t>& mnist,

 std::vector<value_t>& all_pair,

 index_t rows, index_t cols,

 index_t num_threads = 64,

 index_t chunk_size = 16) {

 auto block_cyclic = [&] (const index_t& id) -> void {

 . . .}

 std::vector<std::thread> threads;

 for (index_t id = 0; id < num_threads; id++)

 threads.emplace_back(block_cyclic, id);

 for (auto& thread : threads)

 thread.join();

}

31

Block-cyclic distribution (2/2)

auto block_cyclic = [&] (const index_t& id) -> void {

 const index_t off = id*chunk_size;

 const index_t str = num_threads*chunk_size;

 for (index_t lower = off; lower < rows; lower += str) {

 const index_t upper = std::min(lower+chunk_size,rows);

 for (index_t i = lower; i < upper; i++) {

 for (index_t I = 0; I <= i; I++) {

 value_t accum = value_t(0);

 for (index_t j = 0; j < cols; j++) {

 value_t r = mnist[i*cols+j] - mnist[I*cols+j];

 accum += r * r; }

 all_pair[i*rows+I] = all_pair[I*rows+i] = accum;

}}}}; 32

Block-cyclic distribution

• An increased chunk size causes a higher level of
load imbalance resulting in longer overall execution
times.

33

Dynamic Schedules

• Process a, b, A, B using two processors assuming
T (A) = T (B) = 10 · T (a) = 10 · T (b) = 10 s.

• An optimal schedule assign the tasks {A, a} to
thread 0 and {B, b} to thread 1 resulting in an
overall parallel runtime of 11 seconds.

• A worst-case of {a, b} and {A, B} takes 20 seconds to
compute.

• A greedy on-demand assignment strategy cannot
be worse than 12 seconds.

34

Dynamic Schedules
• Dynamic scheduling is better than static

when the computation time is unknown.

• The following code refines the static block-
cyclic approach to dynamically select
chunks of rows until exhausting all rows.

• A globally accessible variable global_lower
denotes the first row of the current chunk.

• Whenever a thread runs out of work, it
reads global_lower, and increments it by
the chunk size c.

• The variable global_lower should be
protected from race conditions.

#include <mutex>

std::mutex mutex;

mutex.lock()

// this region is only
processed by one
thread at a time

mutex.unlock();

35

Dynamic block-cyclic distribution

std::mutex mutex;

index_t global_lower = 0;

auto dynamic_block_cyc = [&] (const index_t& id) -> void {

 index_t lower = 0;

 while (lower < rows) {

 { // update lower row with global lower row

 std::lock_guard<std::mutex> lock_guard(mutex);

 lower = global_lower;

 global_lower += chunk_size;

 } // here the lock is released

 const index_t upper = std::min(lower+chunk_size,rows);

 for (index_t i = lower; i < upper; i++) {

 . . .

36

lock_guard locks the scope and
automatically releases it on leave.

Dynamic block-cyclic distribution

• The dynamic assignment of chunks to threads is
beneficial for all chunk size configurations.

• Moreover, small chunk sizes are favorable when
processing tasks with heavily skewed load
distributions.

37

Outline

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

38

5. Signaling Threads with
Condition Variables
• The previous race-to-sleep strategy fully utilizes all

spawned threads until completion of their
corresponding tasks – most efficient in terms of
energy consumption.

• When a thread is waiting for an event, it is best to
put it to sleep and wake it on event completion.

• In C++11, we can put threads to sleep and
subsequently signal them to wake up using
condition variables.

39

Workflow
Signaling thread

1. The signaling thread has to
acquire a mutex

2. While holding the lock, the
shared state is modified and
sequential work is performed

3. The lock is released

4. The actual signaling by means
of the condition variable cv is
performed using
cv.notify_one() for one
thread, or cv.notify_all()
for all threads

Waiting thread

1. A waiting thread has to acquire a
std::unique_lock using the mutex

2. While being locked call either
cv.wait(), cv.wait_for(), or
wait_until() using cv. The lock is
released automatically for other
threads

3. In case (i) the cv is notified, (ii) timeout
of cv.wait() or cv.wait_for(), or (iii) a
spurious wake-up occurs, the thread is
awaken, and the lock is reacquired. At
this point, we have to check whether
the globally shared state indicates to
proceed or to wait (sleep) again.

40

Signaling of a sleeping student
#include <chrono> // std::this_thread::sleep_for

#include <condition_variable> // std::condition_variable

using namespace std::chrono_literals;

int main() {

 std::mutex mutex;

 std::condition_variable cv;

 bool time_for_breakfast = false; // globally shared

 auto student = [&] () -> void { // called by thread

 { // this is the scope of the lock

 std::unique_lock<std::mutex> lock(mutex);

 while (!time_for_breakfast)

 cv.wait(lock);

 } // lock is finally released

 std::cout << "Time to make some coffee!" << std::endl;

 }; 41

convenient time formats (C++14 required)

Allows multiple lock and unlock

Signaling of a sleeping student
 // create the waiting thread and wait for 2 s

 std::thread my_thread(student);

 std::this_thread::sleep_for(2s);

 { // prepare the alarm clock

 std::lock_guard<std::mutex> lock_guard(mutex);

 time_for_breakfast = true;

 } // here the lock is released

 // ring the alarm clock

 cv.notify_one();

 // wait until breakfast is finished

 my_thread.join();

} 42

One-shot synchronization using
futures and promises
int main() {

 // create pair (future, promise)

 std::promise<void> promise;

 auto future = promise.get_future();

 auto student = [&] () -> void { // called by thread

 future.get(); // blocks until fulfilling promise

 std::cout << "Time to make coffee!" << std::endl;

 };

 std::thread my_thread(student);

 std::this_thread::sleep_for(2s);

 promise.set_value(); // ring the alarm clock

 my_thread.join();

} 43

Playing ping pong

int main() {

 std::mutex mutex;

 std::condition_variable cv;

 bool is_ping = true; // globally shared state

 auto ping = [&] () -> void {. . .}

 auto pong = [&] () -> void {. . .}

 std::thread ping_thread(ping);

 std::thread pong_thread(pong);

 ping_thread.join();

 pong_thread.join();

}
44

Ping

 auto ping = [&] () -> void {

 while (true) {

 // wait to be signaled

 std::unique_lock<std::mutex> lock(mutex);

 cv.wait(lock,[&](){return is_ping;});

 std::this_thread::sleep_for(1s);

 std::cout << "ping" << std::endl;

 is_ping = !is_ping;

 cv.notify_one();

 }

 };
45

Equivalent to:
while (! is_ping) {
 wait(lock);
}

Pong

 auto pong = [&] () -> void {

 while (true) {

 // wait to be signaled

 std::unique_lock<std::mutex> lock(mutex);

 cv.wait(lock,[&](){return !is_ping;});

 std::this_thread::sleep_for(1s);

 std::cout << "pong" << std::endl;

 is_ping = !is_ping;

 cv.notify_one();

 }

 };
46

Summary

1. Introduction

2. Handling Return Values

3. Scheduling Based on Static Distributions

4. Handling Load Imbalance

5. Signaling Threads with Condition Variables

6. Homework

47

Homework

• From Textbook 1, Section 4.7, solve Exercises:
• Exercise 2 (use the three static thread distribution patterns

and one dynamic distribution pattern. Also report achieved
speedup)

• Exercise 4

• Exercise 5

48

