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1. Introduction 

A Shared Memory System 
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Processes and Threads 

 

• A process is an instance of a running (or 
suspended) program. 

• Threads are analogous to a “light-weight” process. 

• In a shared memory program, a single process may 
have multiple threads of control. 
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Spawning and Joining Threads 

• An arbitrary number of 
software threads can be 
spawned by the master 
thread of a system process. 

• Oversubscription 
• Rules: 

1. Each thread can only be 
joined or detached once. 

2. A detached thread cannot 
be joined, and vice versa. 

3. Joined or detached threads 
cannot be reused. 

4. All threads have to be 
joined or detached within 
the scope of their 
declaration. 
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Multithreading APIs 

• POSIX® Threads: Also known as Pthreads. 
• A standard for Unix-like operating systems. 

• A library that can be linked with C programs. 

• Specifies an application programming interface (API) for 
multi-threaded programming. 

• Windows has .NET Thread and Intel’s Threading 
Building Blocks (TBB). 

• Modern C++ programming language versions (e.g., 
C++11 and C++14) have built in support of 
multithreading. 
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Hello World! (1) 

#include <iostream> // std::cout 

#include <cstdint>  // uint64_t 

#include <vector>   // std::vector 

#include <thread>   // std::thread 

// this function will be called by the threads (should 
be void) 

void say_hello(uint64_t id) { 

   std::cout << "Hello from thread: " << id << 
std::endl; 

} 
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Hello World! (2) 

// this runs in the master thread 

int main(int argc, char * argv[]) { 

  const uint64_t num_threads = 4; 

  std::vector<std::thread> threads; 

  for (uint64_t id = 0; id < num_threads; id++) 

    // emplace the thread object in vector threads 

    // call say_hello with argument id  

    threads.emplace_back(say_hello, id); 

  // join each thread at the end 

  for (auto& thread: threads) 

    thread.join(); 

} 
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Equivalent to: 
threads.push_back(std::thread(say_hello, id)); 

http://www.cplusplus.com/reference/vector/vector/emplace_back/
http://www.cplusplus.com/reference/thread/thread/


Compiling a Pthread program 

g++ -O2 -std=c++11 -pthread hello_world.cpp -o hello_world 
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Link in the Pthreads library 

$./hello_world 

Hello from thread: 3 

Hello from thread: 1 

Hello from thread: 0 

Hello from thread: 2 
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2. Handling Return Values – Using 
Pointers 
template <typename value_t, typename index_t> 

void fibo(value_t n, value_t * result) { 

  // initial conditions 

  value_t a_0 = 0; 

  value_t a_1 = 1; 

 

  // iteratively compute the sequence 

  for (index_t index = 0; index < n; index++) { 

    const value_t tmp = a_0; a_0 = a_1; a_1 += tmp; 

  } 

  *result = a_0; 

} 
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Fibonacci number: Recursively compute 
the n-th number using an = an−1 + an−2 with 
initial conditions a0 = 0, a1 = 1 



2. Handling Return Values – Using 
Pointers 
int main(int argc, char * argv[]) { 

  const uint64_t num_threads = 32; 

  std::vector<std::thread> threads; 

  std::vector<uint64_t> results(num_threads, 0); 

  for (uint64_t id = 0; id < num_threads; id++) 

    // specify template parameters and arguments 

    threads.emplace_back( 

        fibo<uint64_t, uint64_t>, id, &(results[id])); 

  for (auto& thread: threads) 

    thread.join(); 

  // print the result after the join 

  for (const auto& result: results) 

    std::cout << result << std::endl; 

} 12 

Address of a uint64_t 



2. Handling Return Values – Using 
Promises and Futures 

• Create the state s = (p, f ) by 
initially declaring a promise p for 
a specific data type T via 
std::promise<T> p; then assign 
the associated future with 
std::future<T> f = p.get_future();. 

• The promise p is passed as rvalue 
reference via std::promise<T> && 
p. Hence, p has to be moved 
using std::move() from the master 
to the spawned thread. 

• The promise p is fulfilled by 
setting p.set_value(some_value);. 

• Read the future f using f.get(). 
The master thread blocks its 
execution until f is being signaled 
by p. 
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2. Handling Return Values – Using 
Promises and Futures 
… 

#include <future> // std::promise/future 

 

template <typename value_t, typename index_t> 

value_t fibo( 

 value_t n, 

 std::promise<value_t> && result) { 

 

  … 

  

  result.set_value(a_0); // <- fulfill promise 

} 
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The promise, rvalue reference, no memory address 



2. Handling Return Values – Using 
Promises and Futures 
int main(int argc, char * argv[]) { 

  … 

  std::vector<std::future<uint64_t>> results; 

  for (uint64_t id = 0; id < num_threads; id++) { 

    // define a promise and store the associated future 

    std::promise<uint64_t> promise; 

    results.emplace_back(promise.get_future()); 

    threads.emplace_back( 

 fibo<uint64_t, uint64_t>, 

 id, 

 std::move(promise)); 

  } 
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Move the promise to the 
spawned thread. Note that 

promise is now moved 
elsewhere and cannot be 
accessed safely anymore. 

Storage for futures 



2. Handling Return Values – Using 
Promises and Futures 
  // read the futures resulting in synchronization of 

threads 

  // up to the point where promises are fulfilled 

  for (auto& result: results) 

    std::cout << result.get() << std::endl; 

 

  // this is mandatory since threads have to be either 

  // joined or detached at the end of our program 

  for (auto& thread: threads) 

    thread.join(); 

} 
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3. Scheduling Based on Static 
Distributions 
• For problem of size m, spawn p processors. 

• Each processor computes a chunk c:  1 ≤ c ≤ m /p. 
• Block distribution:  c = m/p 
• Cyclic distribution:  c = 1 

• Block-cyclic distribution: 1 < c < m/p 
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Example: Matrix-vector 
multiplication 
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Block Distributions  (1/3) 

template < 

 typename value_t, 

 typename index_t> 

void block_parallel_mult( 

  std::vector<value_t>& A, 

  std::vector<value_t>& x, 

  std::vector<value_t>& y, 

  index_t m, 

  index_t n, 

  index_t num_threads=8) { 
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Block Distributions  (2/3) 

  // inline function called by the threads that 
captures the whole scope of the reference 

  auto block = [&] (const index_t& id) -> void { 

    const index_t chunk = m / num_threads; 

    const index_t lower = id*chunk; 

    const index_t upper = std::min(lower+chunk, m); 

 

    for (index_t row = lower; row < upper; row++) { 

      value_t accum = value_t(0); 

      for (index_t col = 0; col < n; col++) 

        accum += A[row*n+col]*x[col]; 

      y[row] = accum; 

    } 

  }; 21 

c = m/p 



Block Distributions  (3/3) 

  std::vector<std::thread> threads; 

 

  for (index_t id = 0; id < num_threads; id++) 

    threads.emplace_back(block, id); 

 

  for (auto& thread : threads) 

    thread.join(); 

} 
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m = n = 215 

T(1) = 1.29 sec, T(8) = 0.23 sec 
Speedup = 5.6 
Efficiency = 70% 



Cyclic Distribution 

  auto cyclic = [&] (const index_t& id) -> void { 

     

    for (index_t row = id; row < m; row += num_threads) { 

      value_t accum = value_t(0); 

      for (index_t col = 0; col < n; col++) 

        accum += A[row*n+col]*x[col]; 

      y[row] = accum; 

    } 

  }; 
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Also T(8) ≈ 0.23 sec 
Simple, but may suffer from false sharing. 

c = 1 



Block Cyclic Distribution 
index_t chunk_size = 64/sizeof(value_t)) { 

auto block_cyclic = [&] (const index_t& id) -> void { 

    const index_t offset = id*chunk_size; 

    const index_t stride = num_threads*chunk_size; 

    for (index_t lower=offset; lower<m; lower += stride) { 

      const index_t upper = std::min(lower+chunk_size, m); 

      for (index_t row = lower; row < upper; row++) { 

        value_t accum = value_t(0); 

        for (index_t col = 0; col < n; col++) 

          accum += A[row*n+col]*x[col]; 

        y[row] = accum; 

      } 

    } 

  }; 24 

Similar speedup for this example. 
Most complex, but can avoid false sharing. 

1 < c < m/p 
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4. Handling Load Imbalance 

• The case where a few threads still process their 
corresponding chunk of tasks while others have 
already finished their computation is called load 
imbalance. 

• Solutions: 
1. Static Schedules 

2. Dynamic Block-Cyclic Distributions 
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Example: All-Pairs Distance Matrix 

• Compute the all-pairs 
distance matrix. 

• MNIST consists of m = 
65,000 handwritten 
digits stored as gray-
scale images of shape 
28×28. 

• Each image is stored as 
plain vector with n = 
784 intensity values. 
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Example: All-Pairs Distance Matrix 

• One used distance measure is the squared 
Euclidean distance. 

 

 

 

• As d (x (i), x (i’)) = d (x (i'), x (i)), we only need to 
compute the lower triangular part of the distance 
matrix. 

 

• Complexity: O (m2 · n) 
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Sequential Computation of All-
pairs Distance Matrix 
void sequential_all_pairs( std::vector<value_t>& mnist, 

  std::vector<value_t>& all_pair, 

 index_t rows, index_t cols) { 

for (index_t i = 0; i < rows; i++) { 

    for (index_t I = 0; I <= i; I++) { 

 

    value_t accum = value_t(0); 

    for (index_t j = 0; j < cols; j++) { 

      value_t residue = mnist[i*cols+j] - mnist[I*cols+j]; 

      accum += residue * residue; 

    } 

    all_pair[i*rows+I] = all_pair[I*rows+i] = accum; 

} 
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~ 30 minutes 



Static Schedules 

• Block distribution is 
not suitable because it 
takes T (i ) = α · (i + 1) to 
compute row i. 

• Block-cyclic 
distribution is better 
scheme. 
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Block-cyclic distribution  (1/2) 

void parallel_all_pairs( std::vector<value_t>& mnist, 

  std::vector<value_t>& all_pair, 

 index_t rows, index_t cols, 

 index_t num_threads = 64, 

 index_t chunk_size = 16) { 

  auto block_cyclic = [&] (const index_t& id) -> void { 

  . . .} 

  std::vector<std::thread> threads; 

  for (index_t id = 0; id < num_threads; id++) 

    threads.emplace_back(block_cyclic, id); 

  for (auto& thread : threads) 

    thread.join(); 

} 
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Block-cyclic distribution (2/2)  

auto block_cyclic = [&] (const index_t& id) -> void { 

  const index_t off = id*chunk_size; 

  const index_t str = num_threads*chunk_size; 

  for (index_t lower = off; lower < rows; lower += str) { 

    const index_t upper = std::min(lower+chunk_size,rows); 

    for (index_t i = lower; i < upper; i++) { 

      for (index_t I = 0; I <= i; I++) { 

        value_t accum = value_t(0); 

        for (index_t j = 0; j < cols; j++) { 

          value_t r = mnist[i*cols+j] - mnist[I*cols+j]; 

          accum += r * r; } 

        all_pair[i*rows+I] = all_pair[I*rows+i] = accum; 

}}}}; 32 



Block-cyclic distribution 

• An increased chunk size causes a higher level of 
load imbalance resulting in longer overall execution 
times. 
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Dynamic Schedules 

• Process a, b, A, B using two processors assuming    
T (A) = T (B) = 10 · T (a) = 10 · T (b) = 10 s. 

• An optimal schedule assign the tasks {A, a} to 
thread 0 and {B, b} to thread 1 resulting in an 
overall parallel runtime of 11 seconds. 

• A worst-case of {a, b} and {A, B} takes 20 seconds to 
compute. 

• A greedy on-demand assignment strategy cannot 
be worse than 12 seconds. 
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Dynamic Schedules 
• Dynamic scheduling is better than static 

when the computation time is unknown. 

• The following code refines the static block-
cyclic approach to dynamically select 
chunks of rows until exhausting all rows. 

• A globally accessible variable global_lower 
denotes the first row of the current chunk. 

• Whenever a thread runs out of work, it 
reads global_lower, and increments it by 
the chunk size c. 

• The variable global_lower should be 
protected from race conditions. 

 

 

#include <mutex> 

std::mutex mutex; 

 

mutex.lock() 

// this region is only 
processed  by one 
thread at a time 

mutex.unlock(); 
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Dynamic block-cyclic distribution 

std::mutex mutex; 

index_t global_lower = 0; 

auto dynamic_block_cyc = [&] (const index_t& id) -> void { 

  index_t lower = 0; 

  while (lower < rows) { 

    {  // update lower row with global lower row 

      std::lock_guard<std::mutex> lock_guard(mutex); 

      lower = global_lower; 

      global_lower += chunk_size; 

    } // here the lock is released 

    const index_t upper = std::min(lower+chunk_size,rows); 

    for (index_t i = lower; i < upper; i++) { 

      . . . 

     

36 

lock_guard  locks the scope and 
automatically releases it on leave. 



Dynamic block-cyclic distribution 

• The dynamic assignment of chunks to threads is 
beneficial for all chunk size configurations. 

• Moreover, small chunk sizes are favorable when 
processing tasks with heavily skewed load 
distributions. 
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5. Signaling Threads with 
Condition Variables 
• The previous race-to-sleep strategy fully utilizes all 

spawned threads until completion of their 
corresponding tasks – most efficient in terms of 
energy consumption. 

• When a thread is waiting for an event, it is best to 
put it to sleep and wake it on event completion. 

• In C++11, we can put threads to sleep and 
subsequently signal them to wake up using 
condition variables. 
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Workflow 
Signaling thread 

1. The signaling thread has to 
acquire a mutex 

2. While holding the lock, the 
shared state is modified and 
sequential work is performed 

3. The lock is released  

4. The actual signaling by means 
of the condition variable cv is 
performed using 
cv.notify_one() for one 
thread, or cv.notify_all() 
for all threads 

Waiting thread 

1. A waiting thread has to acquire a 
std::unique_lock using the mutex 

2. While being locked call either 
cv.wait(), cv.wait_for(), or 
wait_until() using cv. The lock is 
released automatically for other 
threads 

3. In case (i) the cv is notified, (ii) timeout 
of cv.wait() or cv.wait_for(), or (iii) a 
spurious wake-up occurs, the thread is 
awaken, and the lock is reacquired. At 
this point, we have to check whether 
the globally shared state indicates to 
proceed or to wait (sleep) again. 
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Signaling of a sleeping student  
#include <chrono> // std::this_thread::sleep_for 

#include <condition_variable> // std::condition_variable 

using namespace std::chrono_literals; 

int main() { 

  std::mutex mutex; 

  std::condition_variable cv; 

  bool time_for_breakfast = false; // globally shared 

  auto student = [&] ( ) -> void { // called by thread 

    { // this is the scope of the lock 

      std::unique_lock<std::mutex> lock(mutex); 

      while (!time_for_breakfast) 

        cv.wait(lock); 

    } // lock is finally released  

    std::cout << "Time to make some coffee!" << std::endl; 

  }; 41 

convenient time formats (C++14 required) 

Allows multiple lock and unlock 



Signaling of a sleeping student  
  // create the waiting thread and wait for 2 s 

  std::thread my_thread(student); 

  std::this_thread::sleep_for(2s); 

 

  { // prepare the alarm clock 

    std::lock_guard<std::mutex> lock_guard(mutex); 

    time_for_breakfast = true; 

  } // here the lock is released 

 

  // ring the alarm clock 

  cv.notify_one(); 

  

  // wait until breakfast is finished 

  my_thread.join(); 

} 42 



One-shot synchronization using 
futures and promises 
int main() { 

  // create pair (future, promise) 

  std::promise<void> promise;  

  auto future = promise.get_future(); 

  auto student = [&] ( ) -> void { // called by thread 

    future.get(); // blocks until fulfilling promise 

    std::cout << "Time to make coffee!" << std::endl; 

  }; 

  std::thread my_thread(student); 

  std::this_thread::sleep_for(2s); 

  promise.set_value(); // ring the alarm clock 

  my_thread.join(); 

} 43 



Playing ping pong 

int main() { 

  std::mutex mutex; 

  std::condition_variable cv; 

  bool is_ping = true; // globally shared state 

  auto ping = [&] ( ) -> void {. . .} 

  auto pong = [&] ( ) -> void {. . .} 

  std::thread ping_thread(ping); 

  std::thread pong_thread(pong); 

  ping_thread.join(); 

  pong_thread.join(); 

} 
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Ping 

  auto ping = [&] ( ) -> void { 

    while (true) { 

      // wait to be signaled 

      std::unique_lock<std::mutex> lock(mutex); 

      cv.wait(lock,[&](){return is_ping;}); 

      std::this_thread::sleep_for(1s); 

      std::cout << "ping" << std::endl; 

      is_ping = !is_ping; 

      cv.notify_one(); 

    } 

  }; 
45 

Equivalent to: 
while (! is_ping) { 
    wait(lock); 
} 



Pong 

  auto pong = [&] ( ) -> void { 

    while (true) { 

      // wait to be signaled 

      std::unique_lock<std::mutex> lock(mutex); 

      cv.wait(lock,[&](){return !is_ping;}); 

      std::this_thread::sleep_for(1s); 

      std::cout << "pong" << std::endl; 

      is_ping = !is_ping; 

      cv.notify_one(); 

    } 

  }; 
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Homework  

 

• From Textbook 1, Section 4.7, solve Exercises: 
• Exercise 2 (use the three static thread distribution patterns 

and one dynamic distribution pattern. Also report achieved 
speedup) 

• Exercise 4 

• Exercise 5 
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