
1 of 4 

0907531 Machine Learning (Spring 2018) 

Final Exam 
 

لاسم: ...............................................ا رقم التسجيل: ................... .......... :التسلسلرقم   

============================================================================ 

Instructions: Time 60 min. Open book and notes exam. No electronics. Please answer all problems in the 

space provided and limit your answer to the space provided. No questions are allowed. There are eight 

problems. Each problem has 5 points. 

============================================================================ 

P1. If your model performs great on the training data but generalizes poorly to new instances, what is 

happening? Can you name three possible solutions? 

 

If a model performs great on the training data but generalizes poorly to new instances, the model 

is likely overfitting the training data (or we got extremely lucky on the training data). 

 

Possible solutions to overfitting are getting more data, simplifying the model (selecting a simpler 

algorithm, reducing the number of parameters or features used, or regularizing the model), or 

reducing the noise in the training data. 

 

 

 

 

P2. Complete the following code to find and print the model’s RMSE on the test set. 

import numpy as np  

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_squared_error 

 

train_set, test_set = train_test_split(housing, test_size=0.3) 

X_train = train_set.drop("y", axis=1) 

y_train = train_set["y"].copy() 

X_test = test_set.drop("y", axis=1) 

y_test = test_set["y"].copy() 

 

…   # some code is omitted 

 

forest_reg = RandomForestRegressor(random_state=42) 

forest_reg.fit(X_train_prepared, y_train) 

X_test_prepared = full_pipeline.transform(X_test) 

 

housing_predictions = forest_reg.predict(X_test_prepared) 

 

mse = mean_squared_error(y_test, housing_predictions) 

print("RMSE = ", np.sqrt(mse)) 

 

 

 

 

 

 



2 of 4 

P3. The following code is used in the MNIST classification problem. What is the main purpose of this code 

and how many training jobs it includes? 

from sklearn.model_selection import GridSearchCV 

 

param_grid = [{'weights': ["uniform", "distance"], 

               'n_neighbors': [3, 4, 5]}] 

 

knn_clf = KNeighborsClassifier() 

grid_search = GridSearchCV(knn_clf, param_grid, cv=5) 

grid_search.fit(X_train, y_train) 

 

This is grid search to find best hyper-parameters for the KNN classifier. 

 

It fits 5 folds for each of the 2 × 3 = 6 candidates, totaling 30 fits. 
 

 

 

 

 

 

 

P4. Suppose you have an MLP composed of one input layer with 12 passthrough neurons, followed by one 

hidden layer with 30 artificial neurons, and finally one output layer with 10 artificial neurons. All 

artificial neurons use the ReLU activation function. Assume that the batch size is 40. 

• What is the shape of the input matrix X? 

The shape of X is 40 × 12 

• What about the shape of the hidden layer’s weight vector Wh, and the shape of its bias vector bh? 

The shape of Wh is 12 × 30 and the length of bh is 30 

• What is the shape of the output layer’s weight vector Wo? 

The shape of Wo is 30 × 10 

• What is the shape of the network’s output matrix Y? 

The shape of Y is 40 × 10 

 

 



3 of 4 

P5. How many neurons do you need in the output layer if you want to classify tumor into benign and 

malignant? What activation function should you use in the output layer? If instead you want to tackle 

English letter classification, how many neurons do you need in the output layer, using what activation 

function? Answer the same questions for getting your network to predict oil prices. 

 

 

Problem Output Layer Size Activation Function 

Classify tumor One neuron Logistic 

Letter classification 26 neurons Softmax 

Oil prices One neuron None 

 

 

 

P6. For the following two-layer convolutional network, what is the number of output feature maps of this 

network and what is the size of each map? 

 
height = 28 

width = 28 

channels = 1 

n_inputs = height * width 

 

with tf.name_scope("inputs"): 

    X = tf.placeholder(tf.float32, shape=[None, n_inputs], name="X") 

    X_reshaped = tf.reshape(X, shape=[-1, height, width, channels]) 

 

conv1 = tf.layers.conv2d(X_reshaped, filters=32, kernel_size=3, 

                         strides=1, padding="SAME", 

                         activation=tf.nn.relu, name="conv1") 

conv2 = tf.layers.conv2d(conv1, filters=64, kernel_size=3, 

                         strides=2, padding="SAME", 

                         activation=tf.nn.relu, name="conv2")  

 

 

There are 64 feature maps. 

 

Each map is 14 by 14. 

 

 



4 of 4 

P7. Consider a convolutional layer with 3 × 3 filters, outputting 100 feature maps of size 50 × 50, with stride 

1 and SAME padding. If the input is RGB image (three channels), what is the number of parameters that 

need to be trained for this layer? 

 

The number of parameters is (3 × 3 × 3 + 1) × 100 = 2,800  

 

 

 

 

P8. Complete the following code to implement an RNN that has two LSTM layers. The first layer should 

have 100 neurons and the second layer should have 50 neurons. Use TensorFlow’s dynamic unrolling 

through time function. 

 
n_steps = 28 

n_inputs = 28 

 

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) 

 

# your code goes here 

 

layers = [tf.contrib.rnn. BasicLSTMCell(num_units=100), 
          tf.contrib.rnn. BasicLSTMCell(num_units=50)] 
 

multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers) 

 

outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, 

          dtype=tf.float32) 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

<Good Luck> 


