Machine Learning (Summer 2019)
Midterm Exam

Instructions: Time 60 min. Open book and notes exam. No electronics. Please answer all problems in the
space provided and limit your answer to the space provided. No questions are allowed. There are five
problems.

P1. Give five machine learning solutions that are used in our everyday life. Also, for every solution, specify
the type of used machine learning according to human supervision criterion.
[5 points]
1) Google search, supervised

2) Google translate, supervised
3) Google photo people tagging, semi-supervised
4) Voice command, supervised

5) Amazon book suggestion, unsupervised

P2. Write a Python function that accepts a list of string benefits and prints each benefit on one row. This
function should call a sub-function named build sentence (n, benefit) that receives an integer
n and a string benefit and returns a sentence “Job Benefit n: benefit”. For example, when the function is
called with print the benefits (["JOD600 Salary", "Health Insurance"]), it
should print:
Job Benefit 1: JOD600 Salary
Job Benefit 2: Health Insurance
[5 points]
your code goes here

def build sentence(n, benefit):
return "Job Benefit %d: %s" % (n, benefit)

def print the benefits (list of benefits):
for n, benefit in enumerate(list of benefits):
print (build sentence(n+l, benefit))

lof4

P3. Write Python code to convert temperature list from Python list to a Numpy array. Then, convert all of
the temperature values from Fahrenheit to Celsius. Use the formula € = (F — 32) X 5/9 to make your
conversion. Lastly, print the resulting array of temperature values in Celsius.

[5 points]

temp F = [81.65, 97.52, 95.25, 92.98, 86.18, 88.45]
your code goes here
import numpy as np

Create a numpy array np_temp F from temp F
np _temp F = np.array (temp F)

Create np temp C from np temp F
np temp C = (np_temp F - 32.) * 5. / 9.

Print out np temp C
print (np_temp C)

20f4

P4. Given the information in the box blow, complete the following Python code to scale the numerical
feature, handle the categorical feature, train an SVM Regressor using the prepared features, predict the
response y from the prepared data, and print the RMSE of the predicted response.

[10 points]

>>> data.info ()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 3 columns):

x1 30000 non-null floaté64
X2 30000 non-null object
y 30000 non-null float64

dtypes: float64(3)
memory usage: 1.8+MB

>>> data["x2"].value counts()
Bird 10000
Cat 10000

Dog 10000
Name: x2, dtype: into64

from sklearn.preprocessing import StandardScaler, LabelBinarizer
from sklearn.svm import SVR
from sklearn.metrics import mean squared error

X = data.drop("y", axis=1)
y = data["y"].copy()

your code goes here

Import numpy as np

X_num
X cat

X.drop ("x2", axis=l)
X.drop("x1", axis=1)

scaler = StandardScaler()
X scaled = scaler.fit transform(X num)

encoder = LabelBinarizer ()
X cat lhot = encoder.fit transform(X cat)

X prepared = np.c_[X scaled, X cat lhot]

svm_reg = SVR()
svm_reg.fit (X prepared, y)

y_predictions = svm _reg.predict (X prepared)

print (np.sqrt(mean_squared error(y, y_predictions)))

3o0f4

P5. Complete the following Python code to train a binary classifier that detects digits smaller than 5 using

the Stochastic Gradient Descent (SGD) classifier. Train this classifier on the training set, predict the
classes of the test set, find the confusion matrix, calculate the prediction accuracy from the confusion

matrix, and print this accuracy.

from sklearn.datasets import fetch mldata
from sklearn.linear model import SGDClassifier
from sklearn.metrics import confusion matrix

mnist = fetch mldata ('MNIST original')
X, y = mnist["data"], mnist["target"]
X train, X test = X[:60000], X[60000:]
y train, y test y[:60000], yv[60000:]

your code goes here

y_train less 5 = (y_train < 5)
y_test less 5 = (y_test < 5)

sgd clf = SGDClassifier()
sgd clf.fit(X train, y train less 5)

y_pred = sgd clf.predict (X test)
cm = confusion matrix(y test less 5, y pred)

acc = (cm[0][0]+cm[1][1]) / sum(sum(cm)) #10000
print('Accuracy = ', acc)

<Good Luck>

[5 points]

4 0of 4

